Abstract

Omnidirectional mobility is required for the efficient movement of transport vehicles in factories and warehouses. To meet this requirement, the active omni wheel with barrel-shaped rollers (AOWBR) was previously proposed. The barrel-shaped rollers are arranged around the outer circumference of the main wheel of the AOWBR. This structure is expected to be effective in suppressing vibration during vehicle movement. The transmission roller drives the outer roller via a friction drive, which actively moves the AOWBR in the lateral direction. However, the friction drive may cause slippage between the transmission roller and the outer roller. To solve this problem, this study investigates the effects of the design parameters for an AOWBR on vibration and wheel slippage. The kinetic models of the wheel main body, transmission roller, and outer roller are established. Then, simulations are carried out using the kinetic models for various structural parameter values. The simulation results show that a softer rubber block installed in the support mechanism of the outer roller contributes to reduce wheel slippage but cause larger vibration, and that a larger setting angle between the transmission and outer rollers contributes to reduce slippage and vibration. Finally, comparison experiments are conducted on two types of prototype to verify the simulation results.

References

1.
Siegwart
,
R.
,
Nourbakhsh
,
I. R.
, and
Scaramuzza
,
D.
,
2011
,
Introduction to Autonomous Mobile Robots
,
MIT Press
,
Cambridge
, Chap.
2
.
2.
Taheri
,
H.
, and
Zhao
,
C. X.
,
2020
, “
Omnidirectional Mobile Robots, Mechanisms and Navigation Approaches
,”
Mech. Mach. Theory
,
153
.
3.
Yu
,
H.
,
Spenko
,
M.
, and
Dubowsky
,
S.
,
2004
, “
Omni-Directional Mobility Using Active Split Offset Castors
,”
ASME J. Mech. Des.
,
126
(
5
), pp.
822
829
.
4.
Takane
,
E.
,
Tadakuma
,
K.
,
Watanabe
,
M.
,
Konyo
,
M.
, and
Tadokoro
,
S.
,
2022
, “
Design and Control Method of a Planar Omnidirectional Crawler Mechanism
,”
ASME J. Mech. Des.
,
144
(
1
), p.
013302
.
5.
Indiveri
,
G.
,
2009
, “
Swedish Wheeled Omnidirectional Mobile Robots: Kinematics Analysis and Control
,”
IEEE Trans. Rob.
,
25
(
1
), pp.
164
171
.
6.
Bi
,
Z. M.
, and
Wang
,
L.
,
2010
, “
Dynamic Control Model of a Cobot With Three Omni-Wheels
,”
Rob. Comput. Integr. Manuf.
,
26
(
6
), pp.
558
563
.
7.
Hijikata
,
M.
,
Miyagusuku
,
R.
, and
Ozaki
,
K.
,
2022
, “
Wheel Arrangement of Four Omni Wheel Mobile Robot for Compactness
,”
Appl. Sci.
,
12
(
12
), p.
5798
.
8.
Kim
,
C.
,
Suh
,
J.
, and
Han
,
J. H.
,
2020
, “
Development of a Hybrid Path Planning Algorithm and a Bio-Inspired Control for an Omni-Wheel Mobile Robot
,”
Sensors
,
20
(
15
), p.
4258
.
9.
Şahin
,
O.
, and
Dede
,
M.
,
2021
, “
Investigation of Longitudinal Friction Characteristics of an Omnidirectional Wheel Via LuGre Model
,”
Robotica
,
39
(
9
), pp.
1654
1673
.
10.
Weiss
,
A.
,
Langlois
,
R. G.
, and
Hayes
,
M. J. D.
,
2011
, “
Unified Treatment of the Kinematic Interface Between a Sphere and Omnidirectional Wheel Actuators
,”
ASME J. Mech. Rob.
,
3
(
4
), p.
041001
.
11.
Gfrerrer
,
A.
,
2008
, “
Geometry and Kinematics of the Mecanum Wheel
,”
Comput. Aided Geom. Des.
,
25
(
9
), pp.
784
791
.
12.
Zhang
,
D.
,
Wang
,
G.
, and
Wu
,
Z.
,
2022
, “
Reinforcement Learning-Based Tracking Control for a Three Mecanum Wheeled Mobile Robot
,”
IEEE Trans. Neural Netw. Learn. Syst.
, pp.
1
8
.
13.
Cao
,
G.
,
Zhao
,
X.
,
Ye
,
C.
,
Yu
,
S.
,
Li
,
B.
, and
Jiang
,
C.
,
2022
, “
Fuzzy Adaptive PID Control Method for Multi-Mecanum-Wheeled Mobile Robot
,”
J. Mech. Sci. Technol.
,
36
(
4
), pp.
2019
2029
.
14.
Ye
,
C.
,
Zhang
,
J.
,
Yu
,
S.
, and
Ding
,
G.
,
2019
, “
Movement Performance Analysis of Mecanum Wheeled Omnidirectional Mobile Robot
,”
2019 IEEE International Conference on Mechatronics and Automation (ICMA)
,
Tianjin, China
,
Aug. 4–7
, pp.
1453
1458
.
15.
Granados
,
E.
,
Boularias
,
A.
,
Bekris
,
K.
, and
Aanjaneya
,
M.
,
2022
, “
Model Identification and Control of a Low-Cost Mobile Robot With Omnidirectional Wheels Using Differentiable Physics
,”
2022 International Conference on Robotics and Automation (ICRA)
,
Philadelphia, PA
,
May 23–27
, pp.
1358
1364
.
16.
Xiao
,
H.
,
Yu
,
D.
, and
Chen
,
C. P.
,
2022
, “
Self-Triggered-Organized Mecanum-Wheeled Robots Consensus System Using Model Predictive Based Protocol
,”
Inf. Sci.
,
590
, pp.
45
59
.
17.
Wang
,
Y.
,
Guan
,
X.
,
Hu
,
T.
,
Zhang
,
Z.
, and
Wang
,
Y.
,
2021
, “
Fuzzy PID Controller Based on Yaw Angle Prediction of a Spherical Robot
,”
2021 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Online
,
Sept. 27–Oct. 1
, pp.
3242
3247
.
18.
Zhang
,
Z.
,
Wan
,
Y.
,
Wang
,
Y.
,
Guan
,
X.
,
Ren
,
W.
, and
Li
,
G.
,
2021
, “
Improved Hybrid A* Path Planning Method for Spherical Mobile Robot Based on Pendulum
,”
Int. J. Adv. Robot. Syst.
,
18
(
1
), p.
172988142199295
.
19.
Hu
,
Y.
,
Wei
,
Y.
, and
Liu
,
M.
,
2021
, “
Design and Performance Evaluation of a Spherical Robot Assisted by High-Speed Rotating Flywheels for Self-Stabilization and Obstacle Surmounting
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061001
.
20.
Akella
,
P.
,
O'Reilly
,
O. M.
, and
Sreenath
,
K.
,
2019
, “
Controlling the Locomotion of Spherical Robots or Why BB-8 Works
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
024501
.
21.
Tafrishi
,
S. A.
,
Svinin
,
M.
,
Esmaeilzadeh
,
E.
, and
Yamamoto
,
M.
,
2019
, “
Design, Modeling, and Motion Analysis of a Novel Fluid Actuated Spherical Rolling Robot
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041010
.
22.
Gao
,
X.
,
Yan
,
L.
,
He
,
Z.
,
Wang
,
G.
, and
Chen
,
I.
,
2022
, “
Design and Modeling of a Dual-Ball Self-Balancing Robot
,”
IEEE Robot. Autom. Lett.
,
7
(
4
), pp.
12491
12498
.
23.
Komori
,
M.
,
Matsuda
,
K.
,
Terakawa
,
T.
,
Takeoka
,
F.
,
Nishihara
,
H.
, and
Ohashi
,
H.
,
2016
, “
Active Omni Wheel Capable of Active Motion in Arbitrary Direction and Omnidirectional Vehicle
,”
J. Adv. Mech. Des. Syst. Manuf.
,
10
(
6
), p.
JAMDSM0086
.
24.
Terakawa
,
T.
,
Komori
,
M.
,
Sakamoto
,
M.
,
Kawato
,
Y.
,
Morita
,
Y.
, and
Nishida
,
Y.
,
2019
, “
Two-Wheel-Drive Vehicle That is Movable in the Longitudinal and Lateral Directions With a Small Number of Motors
,”
J. Jpn. Soc. Des. Eng.
,
54
(
2
), pp.
145
160
.
25.
Komori
,
M.
, and
Matsuda
,
K.
,
2018
, “
Velocity Characteristics of Active Omni Wheel Considering Transmitting Mechanism
,”
European Conference on Mechanism Science
,
Aachen, Germany
,
Sept. 4–6
, pp.
109
116
.
26.
Terakawa
,
T.
,
Komori
,
M.
,
Yamaguchi
,
Y.
, and
Nishida
,
Y.
,
2019
, “
Active Omni Wheel Possessing Seamless Periphery and Omnidirectional Vehicle Using It
,”
Precis. Eng.
,
56
, pp.
466
475
.
27.
Long
,
S.
,
Terakawa
,
T.
,
Komori
,
M.
,
Nishida
,
Y.
,
Ougino
,
T.
, and
Hattori
,
Y.
,
2021
, “
Effect of Double-Row Active Omni Wheel on Stability of Single-Track Vehicle in Roll Direction
,”
Mech. Mach. Theory
,
163
.
28.
Galati
,
R.
,
Mantriota
,
G.
, and
Reina
,
G.
,
2022
, “
Adaptive Heading Correction for an Industrial Heavy-Duty Omnidirectional Robot
,”
Sci. Rep.
,
12
(
1
), p.
19608
.
29.
Bae
,
J. J.
, and
Kang
,
N.
,
2016
, “
Design Optimization of a Mecanum Wheel to Reduce Vertical Vibrations by the Consideration of Equivalent Stiffness
,”
Shock Vib.
,
2016
, pp.
1
8
.
30.
Furukawa
,
J.
,
Okamoto
,
H.
, and
Inagaki
,
S.
,
1976
, “
Rubber Elasticity at Large Deformation (I): Theory of Stress-Strain Behavior of Vulcanized Rubber at Large Deformation
,”
Nippon Gomu Kyokaishi
,
49
(
7
), pp.
596
601
.
31.
Okamoto
,
H.
,
Furukawa
,
J.
, and
Inagaki
,
S.
,
1976
, “
Rubber Elasticity at Large Deformation (
II
): Stress-Strain Behavior of Natural Rubber Vulcanizates
,”
Nippon Gomu Kyokaishi
,
49
(
8
), pp.
620
627
.
32.
Janeway
,
R.
,
1975
, “Human Vibration Tolerance Criteria and Applications to Ride Evaluation,” SAE Technical Paper No. 750166.
You do not currently have access to this content.