Abstract

This paper deals with motion modeling of a 5-axis industrial Delta robot. The robot has extra rotational two degrees-of-freedom (DoF) realized with a wrist arm driven through two co-axial telescopic shafts as compared to the basic 3-DoF Delta robot. The kinematic model is derived with fully symbolic Jacobian matrices. Using the derived Jacobians, a novel simplified dynamic model is proposed based on the virtual work principle and the trajectory dependent artificial mass distribution. As compared to the existing literature, the proposed dynamic model does not require Lagrangian multiplier calculation or recursive and parallel computing so that it provides advantage for model-based control design. Also a linear regression model is provided to identify the dynamic parameters. The presented models are suitable to be employed for basic Delta and the extended Delta robots with parallel telescopic shafts as well. The derived models are verified through a Simulink model where the 3D CAD files of robot bodies having the information of real dimensions, masses and moments of inertia are used. The adequate agreement of the proposed dynamic model with the simulation results is illustrated via performing three different generated trajectory profiles. We also demonstrate the better accuracy of the proposed dynamic model as compared to a simplified and widely employed model for basic 3-DoF Delta robot. The simulation model is shared online to serve as a research and test platform for performing tasks such as motion planning, model prototyping, and control design.

References

1.
Zhu
,
G.-N.
,
Zeng
,
Y.
,
Teoh
,
Y. S.
,
Toh
,
E.
,
Wong
,
C. Y.
, and
Chen
,
I.-M.
,
2022
, “
A Bin-Picking Benchmark for Systematic Evaluation of Robotic-Assisted Food Handling for Line Production
,”
IEEE/ASME Trans. Mechatron.
, pp.
1
11
.
2.
Xu
,
P.
,
Cheung
,
C.
,
Li
,
B.
,
Wang
,
C.
, and
Zhao
,
C.
,
2021
, “
Design, Dynamic Analysis, and Experimental Evaluation of a Hybrid Parallel–Serial Polishing Machine With Decoupled Motions
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061008
.
3.
Xie
,
F.
, and
Liu
,
X.-J.
,
2015
, “
Design and Development of a High-Speed and High-Rotation Robot With Four Identical Arms and a Single Platform
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041015
.
4.
Hassan
,
G.
,
Gouttefarde
,
M.
,
Chemori
,
A.
,
Herve
,
P.-E.
,
Rafei
,
M. E.
,
Francis
,
C.
, and
Salle
,
D.
,
2022
, “
Time-Optimal Pick-and-Throw S-Curve Trajectories for Fast Parallel Robots
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
4707
4717
.
5.
Clavel
,
R.
,
1988
, “
Delta: A Fast Robot With Parallel Geometry
,”
Proceedings of the 18th International Symposium on Industrial Robot
,
Lausanne, Switzerland
,
Apr. 26–28
, pp.
91
100
.
6.
Clavel
,
R.
,
Dec. 1990
, “
Device for the Movement and Positioning of an Element in Space
,” U.S. Patent 4 976 582.
7.
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Pierrot
,
F.
,
2005
, “
Par4: Very High Speed Parallel Robot for Pick-and-Place
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Edmonton, Canada
,
Aug. 2–6
, pp.
553
558
.
8.
Yan
,
L.
,
Liu
,
D.
, and
Jiao
,
Z.
,
2016
, “
Novel Design and Kinematics Modeling for Delta Robot With Improved End Effector
,”
IECON Proceedings (Industrial Electronics Conference)
,
Florence, Italy
,
Oct. 23–26
, pp.
741
746
.
9.
Hodgins
,
J.
,
2018
, “
H-Delta: Design and Applications of a Novel 5 Degree of Freedom Parallel Robot
,” Ph.D. thesis,
University of Ontario Institute of Technology
,
Oshawa, Canada
. https://ir.library.dc-uoit.ca/xmlui/handle/10155/919.
10.
Ilch
,
H.
,
Mar. 2015
, “
Industrial Robot
,” U.S. Patent 2015 0202779A1.
11.
Brinker
,
J.
, and
Corves
,
B.
,
2015
, “
A Survey on Parallel Robots With Delta-Like Architecture
,”
2015 IFToMM World Congress Proceedings
,
Taipei, Taiwan
,
Oct. 25–30
, pp.
407
414
.
12.
Autonox Robotics GmbH
, “
Delta Robot Mechanics RL5-1450-6kg – Datasheet
,” https://en.autonox24.com/products/robots/a˙00802.
13.
Pierrot
,
F.
,
Reynaud
,
C.
, and
Fournier
,
A.
,
1990
, “
Delta: A Simple and Efficient Parallel Robot
,”
Robotica
,
8
(
2
), pp.
105
109
.
14.
Codourey
,
A.
,
1996
, “
Dynamic Modelling and Mass Matrix Evaluation of the DELTA Parallel Robot for Axes Decoupling Control
,”
IEEE International Conference on Intelligent Robots and Systems
,
Osaka, Japan
,
Nov. 4–8
,
Vol. 3
, pp.
1211
1218
.
15.
López
,
M.
,
Castillo
,
E.
,
García
,
G.
, and
Bashir
,
A.
,
2006
, “
Delta Robot: Inverse, Direct, and Intermediate Jacobians
,”
Proc. Inst. Mech. Eng. C J. Mech. Eng. Sci.
,
220
(
1
), pp.
103
109
.
16.
Asadi
,
F.
, and
Heydari
,
A.
,
2020
, “
Analytical Dynamic Modeling of Delta Robot With Experimental Verification
,”
Proc. Inst. Mech. Eng. Part K: J. Multi-body Dyn.
,
234
(
3
), pp.
623
630
.
17.
Falezza
,
F.
,
Vesentini
,
F.
,
Di Flumeri
,
A.
,
Leopardi
,
L.
,
Fiori
,
G.
,
Mistrorigo
,
G.
, and
Muradore
,
R.
,
2022
, “
A Novel Inverse Dynamic Model for 3-DoF Delta Robots
,”
Mechatronics
,
83
, p.
102752
.
18.
Laribi
,
M.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2007
, “
Analysis and Dimensional Synthesis of the DELTA Robot for a Prescribed Workspace
,”
Mech. Mach. Theory
,
42
(
7
), pp.
859
870
.
19.
Kelaiaia
,
R.
,
2017
, “
Improving the Pose Accuracy of the Delta Robot in Machining Operations
,”
Int. J. Adv. Manuf. Technol.
,
91
(
5–8
), pp.
2205
2215
.
20.
Brahmia
,
A.
,
Kelaiaia
,
R.
,
Chemori
,
A.
, and
Company
,
O.
,
2022
, “
On Robust Mechanical Design of a PAR2 Delta-Like Parallel Kinematic Manipulator
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011001
.
21.
Ni
,
J.
,
Mei
,
J.
,
Ding
,
Y.
,
Yu
,
D.
,
Duan
,
Y.
, and
Le
,
Y.
,
2023
, “
A Trajectory Planning Approach for Delta Robots Considering Both Motion Smoothness and Dynamic Stress
,”
ASME J. Mech. Rob.
,
15
(
4
), p.
041012
.
22.
Liu
,
X.-J.
,
Han
,
G.
,
Xie
,
F.
,
Meng
,
Q.
, and
Zhang
,
S.
,
2018
, “
A Novel Parameter Optimization Method for the Driving System of High-Speed Parallel Robots
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041010
.
23.
Borchert
,
G.
,
Battistelli
,
M.
,
Runge
,
G.
, and
Raatz
,
A.
,
2015
, “
Analysis of the Mass Distribution of a Functionally Extended Delta Robot
,”
Robot. Comput. Integr. Manuf.
,
31
, pp.
111
120
.
24.
Brinker
,
J.
,
Funk
,
N.
,
Ingenlath
,
P.
,
Takeda
,
Y.
, and
Corves
,
B.
,
2017
, “
Comparative Study of Serial–Parallel Delta Robots With Full Orientation Capabilities
,”
IEEE Robot. Autom. Lett.
,
2
(
2
), pp.
920
926
.
25.
Brinker
,
J.
,
Schmitz
,
M.
,
Takeda
,
Y.
, and
Corves
,
B.
,
2019
,
Dynamic Modeling of Functionally Extended Delta-Like Parallel Robots With Virtual Tree Structures
(
CISM International Centre for Mechanical Sciences, Courses and Lectures, Vol. 584
),
Springer International Publishing
,
Cham, Switzerland
.
26.
Brinker
,
J.
, and
Corves
,
B.
,
2016
,
Lagrangian Based Dynamic Analyses of Delta Robots With Serial–Parallel Architecture
(
CISM International Centre for Mechanical Sciences, Courses and Lectures, Vol. 569
),
Springer International Publishing
,
Cham, Switzerland
.
27.
Brinker
,
J.
,
Corves
,
B.
, and
Takeda
,
Y.
,
2019
, “Kinematic and Dynamic Dimensional Synthesis of Extended Delta Parallel Robots,”
Robotics and Mechatronics
,
R.
(Chunhui) Yang
,
Y.
Takeda
,
C.
Zhang
, and
G.
Fang
, eds.,
Springer International Publishing
,
Cham, Switzerland
, pp.
131
143
.
28.
Wu
,
M.
,
Mei
,
J.
,
Ni
,
J.
, and
Hu
,
W.
,
2021
, “
Trajectory Tracking Control of Delta Parallel Robot Based on Disturbance Observer
,”
Proc. Inst. Mech. Eng. Part I: J. Syst. Control Eng.
,
235
(
7
), pp.
1193
1203
.
29.
Boudjedir
,
C.
,
Boukhetala
,
D.
, and
Bouri
,
M.
,
2018
, “
Nonlinear PD Plus Sliding Mode Control With Application to a Parallel Delta Robot
,”
J. Electr. Eng.
,
69
(
5
), pp.
329
336
.
30.
Boudjedir
,
C.
,
Bouri
,
M.
, and
Boukhetala
,
D.
,
2019
, “
Iterative Learning Control for Trajectory Tracking of a Parallel Delta Robot
,”
At-Automatisierungstechnik
,
67
(
2
), pp.
145
156
.
31.
Zhao
,
R.
,
Wu
,
L.
, and
Chen
,
Y.-H.
,
2020
, “
Robust Control for Nonlinear Delta Parallel Robot With Uncertainty: An Online Estimation Approach
,”
IEEE Access
,
8
, pp.
97604
97617
.
32.
Corbel
,
D.
,
Gouttefarde
,
M.
,
Company
,
O.
, and
Pierrot
,
F.
,
2010
, “
Actuation Redundancy As a Way to Improve the Acceleration Capabilities of 3T and 3T1R Pick-and-Place Parallel Manipulators
,”
ASME J. Mech. Rob.
,
2
(
4
), p.
041002
.
33.
Alikoç
,
B.
,
Šustr
,
V.
,
Zítek
,
F.
, and
Burget
,
P.
,
2022
, “
Repository With Simulation Models and Trajectory Data Sets for the 5-Axis Delta Robot RL5-1450-6kg
,” Testbed for Industry 4.0 – CIIRC, Prague, Czech Republic, last modified July 12, 2022, https://github.com/testbedCIIRC/delta-robot-public. Accessed May 31, 2022.
34.
Brinker
,
J.
,
Lübbecke
,
M.
,
Takeda
,
Y.
, and
Corves
,
B.
,
2017
, “
Optimization of the Reconfiguration Planning of Handling Systems Based on Parallel Manipulators With Delta-Like Architecture
,”
IEEE Robot. Autom. Lett.
,
2
(
3
), pp.
1802
1808
.
35.
Williams II
,
R.
,
2016
, “
The Delta Parallel Robot: Kinematics Solutions
,” Ohio University, https://www.ohio.edu/mechanical-faculty/williams/html/PDF/DeltaKin.pdf, Accessed January 2016.
You do not currently have access to this content.