Abstract

The introduction of intrinsic compliance in the design of robots allows to reduce the risk for humans working in the vicinity of a robotic cell. Indeed, it permits to decouple the dynamic effects of the links’ inertia from those of the rotors’ inertia, thus reducing the maximum impact force in case of a collision. However, robot designers are lacking modeling tools to help simulate numerous collision scenarios, analyze the behavior of a compliant robot, and optimize its design. In this article, we introduce a method to reduce the dynamic model of a multi-link compliant robot to a simple translational mass-spring-mass system. Simulation results show that this reduced model allows to accurately predict the maximal impact force in case of a collision with a constrained human body part. Multiple impact scenarios are conducted on two case studies, a planar serial elastic robot and the R-Min robot, an underactuated parallel planar robot, designed for collaboration.

References

1.
Versace
,
J.
,
1971
, “
A Review of the Severity Index
,” In
Proceedings of 15th Stapp Car Crash Conference
, SAE Technical Paper No. 710881, pp.
771
796
.
2.
Haddadin
,
Sami
,
Albu-Schäffer
,
Alin
, and
Hirzinger
,
Gerd
,
2007
, “
Safety Evaluation of Physical Human-Robot Interaction Via Crash-Testing
,”
Robotics: Science and Systems
,
Atlanta, GA
,
June 27–30
.
3.
Haddadin
,
Sami
,
Albu-Schäffer
,
Alin
, and
Hirzinger
,
Gerd
,
2008
, “
The Role of the Robot Mass and Velocity in Physical Human-Robot Interaction–Part I: Non-Constrained Blunt Impacts
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, IEEE, pp.
1331
1338
.
4.
ISO/TC 299: ISO/TS15066
,
2016
.
Robots and Robotic Devices – Collaborative Robots
. Technical Report ISO/TS15066,
International Organization for Standardization
, February.
5.
Melia
,
M.
,
Schmidt
,
M.
,
Geissler
,
B.
,
König
,
J.
,
Krahn
,
U.
,
Ottersbach
,
H. J.
,
Letzel
,
S.
, and
Muttray
,
A.
,
2015
, “
Measuring Mechanical Pain: The Refinement and Standardization of Pressure Pain Threshold Measurements
,”
Behav. Res. Meth.
,
47
(
1
), pp.
216
227
.
6.
Haddadin
,
Sami
,
Albu-Schäffer
,
Alin
,
Frommberger
,
Mirko
, and
Hirzinger
,
Gerd
,
2008
, “
The Role of the Robot Mass and Velocity in Physical Human-Robot Interaction-Part II: Constrained Blunt Impacts
,”
2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, IEEE, pp.
1339
1345
.
7.
Hirzinger
,
G.
,
Sporer
,
N.
,
Albu-Schäffer
,
A.
,
Hahnle
,
M.
,
Krenn
,
R.
,
Pascucci
,
A.
, and
Schedl
,
M.
,
2002
, “
DLR’s Torque-Controlled Light Weight Robot III-Are We Reaching the Technological Limits Now?
” In
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
, Vol.
2
,
IEEE
, pp.
1710
1716
.
8.
Kim
,
Y.-J.
,
2017
, “
Anthropomorphic Low-Inertia High-Stiffness Manipulator for High-Speed Safe Interaction
,”
IEEE Trans. Rob.
,
33
(
6
), pp.
1358
1374
.
9.
Bicchi
,
A.
, and
Tonietti
,
G.
,
2004
, “
Fast and ‘Soft-Arm” Tactics [Robot Arm Design]
,”
IEEE Rob. Autom. Mag.
,
11
(
2
), pp.
22
33
.
10.
Pratt
,
Gill A.
, and
Williamson
,
Matthew M.
,
1995
, “
Series elastic actuators
,”
1995 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Pittsburgh, PA
,
Aug. 5–9
, Vol. 1, IEEE, pp.
399
406
.
11.
Pratt
,
J.
,
Krupp
,
B.
, and
Morse
,
C.
,
2002
, “
Series Elastic Actuators for High Fidelity Force Control
,”
Ind. Rob.: Int. J.
,
29
(
3
), pp.
234
241
.
12.
Zinn
,
M.
,
Roth
,
B.
,
Khatib
,
O.
, and
Salisbury
,
J. K.
,
2004
, “
A New Actuation Approach for Human Friendly Robot Design
,”
Int. J. Rob. Res.
,
23
(
4–5
), pp.
379
398
.
13.
Khatib
,
O.
,
1995
, “
Inertial Properties in Robotic Manipulation: An Object-Level Framework
,”
Int. J. Rob. Res.
,
14
(
1
), pp.
19
36
.
14.
Haddadin
,
Sami
,
Albu-Schäffer
,
Alin
,
Eiberger
,
Oliver
, and
Hirzinger
,
Gerd
,
2010
, “
New Insights Concerning Intrinsic Joint Elasticity for Safety
,”
2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, IEEE, pp.
2181
2187
.
15.
Kishi
,
Yasuo
,
Yamada
,
Yoji
, and
Yokoyama
,
Kazuhiko
,
2012
, “
The Role of Joint Stiffness Enhancing Collision Reaction Performance of Collaborative Robot Manipulators
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
376
381
.
16.
Lauzier
,
N.
, and
Gosselin
,
C.
,
2015
, “
A Comparison of the Effectiveness of Design Approaches for Human-Friendly Robots
,”
ASME J. Mech. Des.
,
137
(
8
), p.
082302
.
17.
Song
,
S.
,
She
,
Y.
,
Wang
,
J.
, and
Su
,
H. J.
,
2020
, “
Toward Tradeoff Between Impact Force Reduction and Maximum Safe Speed: Dynamic Parameter Optimization of Variable Stiffness Robots
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
054503.
18.
Haddadin
,
Sami
,
Krieger
,
Kai
,
Mansfeld
,
Nico
, and
Albu-Schäffer
,
Alin
,
2012
, “
On Impact Decoupling Properties of Elastic Robots and Time Optimal Velocity Maximization on Joint Level
,”
2012 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Vilamoura-Algarve, Portugal
,
Oct. 7–12
, IEEE, pp.
5089
5096
.
19.
Herbster
,
Sebastian
,
Behrens
,
Roland
, and
Elkmann
,
Norbert
,
2020
, “
A New Approach to Estimate the Apparent Mass of Collaborative Robot Manipulators
,”
International Symposium on Experimental Robotics
,
Malta
,
Nov. 9–12
, Springer, pp.
211
221
.
20.
She
,
Y.
,
Song
,
S.
,
Su
,
H.-J.
, and
Wang
,
J.
,
2020
, “
A Comparative Study on the Effect of Mechanical Compliance for a Safe Physical Human-Robot Interaction
,”
ASME J. Mech. Des.
,
142
(
6
), p.
063305
.
21.
Seriani
,
S.
,
Gallina
,
P.
,
Scalera
,
L.
, and
Lughi
,
V.
,
2018
, “
Development of N-DOF Preloaded Structures for Impact Mitigation in Cobots
,”
ASME J. Mech. Rob.
,
10
(
5
), p.
051009
.
22.
Khalil
,
W.
, and
Dombre
,
E.
,
2002
, “Chapter 14–Motion Control”. In
Modeling, Identification and Control of Robots
,
W.
Khalil
and
E.
Dombre
, eds.
Butterworth-Heinemann
,
Oxford
, pp.
347
376
.
23.
Khalil
,
W.
, and
Dombre
,
E.
,
2004
,
Modeling, Identification and Control of Robots, Kogan Page Science Paper Edition Modeling, Identification & Control of Robots
,
Elsevier Science
,
Edinburgh, UK
.
24.
Albu-Schäffer
,
Alin
,
Fischer
,
M.
,
Schreiber
,
G.
,
Schoeppe
,
F.
, and
Hirzinger
,
Gerd
,
2004
, “
Soft Robotics: What Cartesian Stiffness Can Obtain With Passively Compliant, Uncoupled Joints?
2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)(IEEE Cat. No. 04CH37566)
,
Sendai, Japan
,
Sept. 28–Oct. 2
, IEEE, pp.
3295
3301
.
25.
Jeanneau
,
G.
,
2022
, “
Analyse et conception d’un robot paralléle sous-actionné intrinséquement sûr
”. Ph.D. thesis, École Centrale de Nantes.
26.
Jeanneau
,
G.
,
Bégoc
,
V.
, and
Briot
,
S.
,
2020
, “
Geometrico-Static Analysis of a New Collaborative Parallel Robot for Safe Physical Interaction
,”
2020 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference (IDETC-CIE 2020)
,
St Louis, MO (virtual)
,
Aug. 17–19
.
27.
Jeanneau
,
G.
,
Bégoc
,
V.
,
Briot
,
S.
, and
Goldsztejn
,
A.
,
2020
, “
R-Min: A Fast Collaborative Underactuated Parallel Robot for Pick-and-Place Operations
,”
2020 IEEE International Conference on Robotics and Automation
,
Paris, France
,
May 31–Aug. 31
.
28.
DGUV-Information
,
2017
.
Collaborative Robot Systems Design of Systems With ”Power and Force Limiting” Function
. Available Online at https://www.dguv.de/medien/fb-holzundmetall/publikationen-dokumente/infoblaetter/infobl_englisch/080_collabora tiverobotsystems.pdf, updated on Aug. 2017.
29.
Vicentini
,
F.
,
2021
, “
Collaborative Robotics: A Survey
,”
ASME J. Mech. Des.
,
143
(
4
), p.
040802
.
30.
Jeanneau
,
G.
,
Bégoc
,
V.
, and
Briot
,
S.
,
2023
, “
Experimental Safety Analysis of R-min, An Underactuated Parallel Robot
,”
ASME J. Mech. Rob.
,
15
(
3
), p.
031004
.
You do not currently have access to this content.