Abstract

This paper introduces for the first time, the Lagrange's dynamic equations in dual number quaternion form. Additionally, Rayleigh's dissipation function in dual quaternion form is introduced here allowing for the accounting of dissipative (non-conservative) forces such as motion through a viscous fluid, friction, and spring damping force. As an example, dual quaternions are used here to derive the Lagrange dynamic equations of a robot manipulator.

References

1.
Dantam
,
N. T.
,
2021
, “
Robust and Efficient Forward, Differential, and Inverse Kinematics Using Dual Quaternions
,”
Int. J. Rob. Res.
,
40
(
10–11
), pp.
1087
1105
.
2.
Adorno
,
B. V.
2017
, “
Robot Kinematic Modeling and Control Based on Dual Quaternion Algebra—Part I: Fundamentals
,” https://hal.archives-ouvertes.fr/hal-01478225v1.
3.
Sarker
,
A.
,
Sinha
,
A.
, and
Chakraborty
,
N.
,
2020
, “
On Screw Linear Interpolation for Point-to-Point Path Planning
,”
Proceedings of the 2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 25–29
, pp.
9480
9487
.
4.
Horsch
,
T.
, and
Nolzen
,
H.
,
1992
, “
Local Motion Planning Avoiding Obstacles With Dual Quaternions
,”
Proceedings of the 1992 IEEE International Conference on Robotics and Automation
,
Nice, France
,
May 12–14
, pp.
241
245
. Vol. 1.
5.
Hoang-Lan
,
P.
,
Perdereau
,
V.
,
Adorno
,
B. V.
, and
Fraisse
,
P.
,
2010
, “
Position and Orientation Control of Robot Manipulators Using Dual Quaternion Feedback
,”
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
658
663
.
6.
Adorno
,
B. V.
,
Fraisse
,
P.
, and
Druon
,
S.
,
2010
, “
Dual Position Control Strategies Using the Cooperative Dual Task-Space Framework
,”
Proceedings of the 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Taipei, Taiwan
,
Oct. 18–22
, pp.
3955
3960
.
7.
Yang
,
X.
,
Wu
,
H.
,
Chen
,
B.
,
Li
,
Y.
, and
Jiang
,
S.
,
2018
, “
A Dual Quaternion Approach to Efficient Determination of the Maximal Singularity-Free Joint Space and Workspace of Six-DOF Parallel Robots
,”
Mech. Mach. Theory
,
129
, pp.
279
292
.
8.
Adorno
,
B. V.
, and
Marques Marinho
,
M.
,
2021
, “
DQ Robotics: A Library for Robot Modeling and Control
,”
IEEE Rob. Automation Mag.
,
28
(
3
), pp.
102
116
.
9.
Valverde
,
A.
, and
Tsiotra
,
P.
,
2018
, “
Dual Quaternion Framework for Modeling of Spacecraft-Mounted Multibody Robotic Systems
,”
Front. Rob. AI
,
5
(
128
).
10.
Silva
,
F. F. A.
,
Quiroz-Omaña
,
J. J.
, and
Adorno
,
B. V.
,
2022
, “
Dynamics of Mobile Manipulators Using Dual Quaternion Algebra
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061005
.
11.
Wang
,
X.
,
Han
,
D.
,
Yu
,
C.
, and
Zheng
,
Z.
,
2012
, “
The Geometric Structure of Unit Dual Quaternion With Application in Kinematic Control
,”
J. Math. Anal. Appl.
,
389
(
2
), pp.
1352
1364
.
12.
Dooley
,
J. R.
, and
McCarthy
,
J.
,
1993
, “
On the Geometric Analysis of Optimum Trajectories for Cooperating Robots Using Dual Quaternion Coordinates
,”
Proceedings of the 1993 IEEE International Conference on Robotics and Automation, 1993
,
Cambridge, MA
,
Oct. 3–6
, vol.
1
, pp.
1031
1036
.
13.
Stanfield
,
K.
, and
Younes
,
A. B.
,
2021
, “
Dual-Quaternion Analytic LQR Control Design for Spacecraft Proximity Operations
,”
Sensors
,
21
(
11
), p.
3597
.
14.
Sun
,
C.
, et al
,
2021
, “
Dual Quaternion Based Close Proximity Operation for In-Orbit Assembly via Model Predictive Control
,”
Int. J. Aerospace Eng.
, 2021.
15.
Wang
,
X.
, and
Yu
,
C.
,
2011
, “
Unit-Dual-Quaternion-Based PID Control Scheme for Rigid-Body Transformation
,”
IFAC Proceedings Volumes
, 44(1).
16.
Filipe
,
N.
,
2014
, “
Nonlinear Pose Control and Estimation for Space Proximity Operations: An Approach Based on Dual Quaternions
,”
PhD thesis
,
Georgia Institute of Technology
.
17.
Study
,
E.
,
1903
,
Die Geometrie der Dynamen
,
Verlag Teubner
,
Leipzig
,
437
.
18.
Wu
,
Y. X.
,
Hu
,
X. P.
,
Hu
,
D. W.
, and
Lian
,
J. X.
,
2015
, “
Strapdown Inertial Navigation System Algorithms Based on Dual Quaternions
,”
IEEE Trans. Aerospace Electron. Syst.
,
41
(
1
), pp.
110
132
.
19.
Lipkin
,
H.
,
2005
, “
Time Derivatives of Screws With Applications to Dynamics and Stiffness
,”
Mech. Mach. Theory
, Elsevier,
40
(
3
), pp.
259
273
.
20.
Wang
,
J.
,
Liang
,
H.
, and
Sun
,
Z.
,
2012
, “
Dual-Quaternion Based Finite-Time Control for Spacecraft Tracking in Six Degrees of Freedom
,”
Proc. Inst. Mech. Eng., Part G: J. Aerospace Eng.
,
227
(
3
), pp.
528
545
.
21.
Valverde
,
A.
,
2018
, “Dynamic Modeling and Control of Spacecraft Robotic Systems Using Dual Quaternions,”
Dissertation
,
Georgia Institute of Technology
. http://hdl.handle.net/1853/59928
22.
Brodsky
,
V.
, and
Shoham
,
M.
,
2000
, “
Dual Numbers Representation of Rigid Body Dynamics
,”
Mech. Mach. Theory
,
35
(
5
), pp.
III
IV
.
23.
Siciliano
,
B.
, and
Khatib
,
O.
,
2008
,
Springer Handbook of Robotics
,
Springer Berlin Heidelberg
,
Berlin, Heidelberg
. http://link.springer.com/10.1007/978-3-540-30301-5
24.
Sinha
,
A.
,
Sarker
,
A.
, and
Chakraborty
,
N.
,
2021
, “
Task Space Planning With Complementarity Constraint-Based Obstacle Avoidance
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8B: 45th Mechanisms and Robotics Conference (MR)
,
Virtual, Online
,
Aug. 17–19
.
You do not currently have access to this content.