Abstract

The primary motivation of this study is to develop a sensor-less, easily controlled, and passively adaptive robotic gripper. A back-drivable pneumatic underactuated robotic gripper (PURG), based on the pneumatic cylinder and underactuated finger mechanism, is presented to accomplish the above goals. A feedforward grasping force control method, based on the learned kinematics of the underactuated finger mechanism, is proposed to achieve sensor-less grasping force control. To enhance the grasping force control accuracy, a state-based actuating force modeling method is presented to compensate the hysteresis error which exists in the transmission mechanism. Actuating force control experiment is performed to validate the effectiveness of the state-based actuating pressure modeling method. Results reveal that compared with the non-state-based modeling method, the proposed state-based actuating force modeling method could reduce the modeling error and control error by about 37.0% and 77.2%, respectively. Results of grasping experiments further reveal that grasping force could be accurately controlled by the state-based feedforward control model in a sensor-less approach. Adaptive grasping experiments are performed to exhibit the effectiveness of the sensor-less grasping force control approach.

References

1.
Blanes
,
C.
,
Ortiz
,
C.
,
Mellado
,
M.
, and
Beltrán
,
P.
,
2015
, “
Assessment of Eggplant Firmness With Accelerometers on a Pneumatic Robot Gripper
,”
Comput. Electron. Agric.
,
113
(
1
), pp.
44
50
.
2.
Ji
,
W.
,
Qian
,
Z.
,
Xu
,
B.
,
Chen
,
G.
, and
Zhao
,
D.
,
2019
, “
Apple Viscoelastic Complex Model for Bruise Damage Analysis in Constant Velocity Grasping by Gripper
,”
Comput. Electron. Agric.
,
162
(
1
), pp.
907
920
.
3.
Xiong
,
Y.
,
Peng
,
C.
,
Grimstad
,
L.
,
From
,
P. J.
, and
Isler
,
V.
,
2019
, “
Development and Field Evaluation of a Strawberry Harvesting Robot With a Cable-Driven Gripper
,”
Comput. Electron. Agric.
,
157
(
1
), pp.
392
402
.
4.
Endo
,
G.
, and
Otomo
,
N.
,
2016
, “
Development of a Food Handling Gripper Considering an Appetizing Presentation
,”
Proceedings of 2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
4901
4906
.
5.
Wang
,
Z.
, and
Hirai
,
S.
,
2018
, “
A Soft Gripper With Adjustable Stiffness and Variable Working Length for Handling Food Material
,”
Proceedings of 2018 IEEE International Conference on Real-Time Computing and Robotics (RCAR)
,
Kandima, Maldives
,
Aug. 1–5
, IEEE, pp.
25
29
.
6.
Kuriyama
,
Y.
,
Okino
,
Y.
,
Wang
,
Z.
, and
Hirai
,
S.
,
2019
, “
A Wrapping Gripper for Packaging Chopped and Granular Food Materials
,”
Proceedings of 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft)
,
Seoul, South Korea
,
Apr. 14–18
, IEEE, pp.
114
119
.
7.
Zhongkui
,
W.
,
Keung
,
O.
, and
Shinichi
,
H.
,
2020
, “
A Dual-Mode Soft Gripper for Food Packaging
,”
Rob. Auton. Syst.
,
125
(
1
), p.
103427
.
8.
Kim
,
U.
,
Seok
,
D.-Y.
,
Kim
,
Y. B.
,
Lee
,
D.-H.
, and
Choi
,
H. R.
,
2016
, “
Development of a Grasping Force-Feedback User Interface for Surgical Robot System
,”
Proceedings of 2016 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Daejeon, South Korea
,
Oct. 9–14
, IEEE, pp.
845
850
.
9.
Gerboni
,
G.
,
Brancadoro
,
M.
,
Tortora
,
G.
,
Diodato
,
A.
,
Cianchetti
,
M.
, and
Menciassi
,
A.
,
2016
, “
A Novel Linear Elastic Actuator for Minimally Invasive Surgery: Development of a Surgical Gripper
,”
Smart Mater. Struct.
,
25
(
10
), p.
105025
.
10.
Guo
,
J.
,
Low
,
J.-H.
,
Liang
,
X.
,
Lee
,
J. S.
,
Wong
,
Y.-R.
, and
Yeow
,
R. C. H.
,
2019
, “
A Hybrid Soft Robotic Surgical Gripper System for Delicate Nerve Manipulation in Digital Nerve Repair Surgery
,”
IEEE/ASME Trans. Mechatron.
,
24
(
4
), pp.
1440
1451
.
11.
Scimeca
,
L.
,
Maiolino
,
P.
,
Cardin-Catalan
,
D.
,
del Pobil
,
A. P.
,
Morales
,
A.
, and
Iida
,
F.
,
2019
, “
Non-Destructive Robotic Assessment of Mango Ripeness Via Multi-point Soft Haptics
,”
Proceedings of 2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, IEEE, pp.
1821
1826
.
12.
Seguin
,
P.
,
Preault
,
C.
,
Vulliez
,
P.
, and
Gazeau
,
J. P.
,
2023
, “
Approach for Real In-Hand Dexterity Evaluation: Application to the RoBioSS Hand
,”
ASME J. Mech. Rob.
,
15
(
6
), p.
065001
.
13.
Odhner
,
L. U.
,
Jentoft
,
L. P.
,
Claffee
,
M. R.
,
Corson
,
N.
,
Tenzer
,
Y.
,
Ma
,
R. R.
,
Buehler
,
M.
,
Kohout
,
R.
,
Howe
,
R. D.
, and
Dollar
,
A. M.
,
2014
, “
A Compliant, Underactuated Hand for Robust Manipulation
,”
Int. J. Rob. Res.
,
33
(
5
), pp.
736
752
.
14.
Zhang
,
T.
,
Jiang
,
L.
,
Wu
,
X.
,
Feng
,
W.
,
Zhou
,
D.
, and
Liu
,
H.
,
2014
, “
Fingertip Three-Axis Tactile Sensor for Multifingered Grasping
,”
IEEE/ASME Trans. Mechatron.
,
20
(
4
), pp.
1875
1885
.
15.
Jentoft
,
L. P.
,
Dollar
,
A. M.
,
Wagner
,
C. R.
, and
Howe
,
R. D.
,
2014
, “
Intrinsic Embedded Sensors for Polymeric Mechatronics: Flexure and Force Sensing
,”
Sensors
,
14
(
3
), pp.
3861
3870
.
16.
Hsu
,
J.
,
Yoshida
,
E.
,
Harada
,
K.
, and
Kheddar
,
A.
,
2017
, “
Self-Locking Underactuated Mechanism for Robotic Gripper
,”
Proceedings of 2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Munich, Germany
,
July 3–7
, IEEE, pp.
620
627
.
17.
Kim
,
U.
,
Lee
,
D.
,
Yoon
,
W. J.
,
Hannaford
,
B.
, and
Choi
,
H. R.
,
2015
, “
Force Sensor Integrated Surgical Forceps for Minimally Invasive Robotic Surgery
,”
IEEE Trans. Rob.
,
31
(
5
), pp.
1214
1224
.
18.
Hua
,
H.
,
Liao
,
Z.
, and
Zhao
,
J.
,
2022
, “
Design, Analysis, and Experiment of an Underactuated Robotic Gripper Actuated by Linear Series Elastic Actuator
,”
ASME J. Mech. Rob.
,
15
(
2
), p.
021002
.
19.
Hua
,
H.
,
Liao
,
Z.
, and
Chen
,
Y.
,
2020
, “
A 1-DOF Bidirectional Graspable Finger Mechanism for Robotic Gripper
,”
J. Mech. Sci. Technol.
,
34
(
11
), pp.
4735
4741
.
20.
Hua
,
H.
,
Liao
,
Z.
,
Wu
,
X.
, and
Chen
,
Y.
,
2021
, “
A Bezier Based State Calibrating Method for Low-Cost Potentiometer With Inherent Nonlinearity
,”
Measurement
,
178
(
1
), p.
109325
.
21.
Hua
,
H.
,
Song
,
J.
,
Liao
,
Z.
, and
Zhao
,
J.
,
2022
, “
Design and Experiment of Miniature Linear Series Elastic Actuator for Robotic Grasping
,”
Trans. Chin. Soc. Agric. Mach.
,
53
(
12
), pp.
500
506
.
22.
Huang
,
S.-J.
,
Chang
,
W.-H.
, and
Su
,
J.-Y.
,
2017
, “
Intelligent Robotic Gripper With Adaptive Grasping Force
,”
Int. J. Control Autom. Syst.
,
15
(
5
), pp.
2272
2282
.
23.
Guo
,
M.
,
Wu
,
P.
,
Yi
,
B.
,
Gealy
,
D.
,
McKinley
,
S.
, and
Abbeel
,
P.
,
2019
, “
Blue Gripper: A Robust, Low-Cost, and Force-Controlled Robot Hand
,”
Proceedings of 2019 IEEE 15th International Conference on Automation Science and Engineering (CASE)
,
Vancouver, BC, Canada
,
Aug. 22–26
, IEEE, pp.
1505
1510
.
24.
Hua
,
H.
,
Liao
,
Z.
,
Chen
,
Y.
, and
Xu
,
C.
,
2021
, “
Design and Test of Compact Series Elastic Force Actuator for Grasping Mechanism
,”
Trans. Chin. Soc. Agric. Mach.
,
52
(
12
), pp.
426
432
.
25.
Hua
,
H.
,
Liao
,
Z.
,
Wu
,
X.
,
Chen
,
Y.
, and
Feng
,
C.
,
2022
, “
A Back-Drivable Linear Force Actuator for Adaptive Grasping
,”
J. Mech. Sci. Technol.
,
36
(
8
), pp.
4213
4220
.
26.
Zhou
,
J.
,
Chen
,
S.
, and
Wang
,
Z.
,
2017
, “
A Soft Robotic Gripper With Enhanced Object Adaptation and Grasping Reliability
,”
IEEE Rob. Autom. Lett.
,
2
(
4
), pp.
1
6
.
27.
Gong
,
Z.
,
Fang
,
X.
,
Chen
,
X.
,
Cheng
,
J.
,
Xie
,
Z.
,
Liu
,
J.
,
Chen
,
B.
, et al
,
2021
, “
A Soft Manipulator for Efficient Delicate Grasping in Shallow Water: Modeling, Control, and Real-World Experiments
,”
Int. J. Rob. Res.
,
40
(
1
), pp.
449
469
.
28.
Liu
,
Q.
,
Liu
,
A.
,
Meng
,
W.
,
Ai
,
Q.
, and
Xie
,
S. Q.
,
2017
, “
Hierarchical Compliance Control of a Soft Ankle Rehabilitation Robot Actuated by Pneumatic Muscles
,”
Front. Neurorobot.
,
11
(
64
), p.
64
.
29.
Liu
,
Q.
,
Zuo
,
J.
,
Zhu
,
C.
, and
Xie
,
S. Q.
,
2020
, “
Design and Control of Soft Rehabilitation Robots Actuated by Pneumatic Muscles: State of the Art
,”
Future Gener. Comput. Syst.
,
113
(
01
), pp.
620
634
.
30.
Zhong
,
B.
,
Cao
,
J.
,
McDaid
,
A.
,
Xie
,
S. Q.
, and
Zhang
,
M.
,
2020
, “
Synchronous Position and Compliance Regulation on a Bi-Joint Gait Exoskeleton Driven by Pneumatic Muscles
,”
IEEE Trans. Autom. Sci. Eng.
,
17
(
4
), pp.
2162
2166
.
31.
Zhang
,
B.
,
Xie
,
Y.
,
Zhou
,
J.
,
Wang
,
K.
, and
Zhang
,
Z.
,
2020
, “
State-of-the-Art Robotic Grippers, Grasping and Control Strategies, as Well as Their Applications in Agricultural Robots: A Review
,”
Comput. Electron. Agric.
,
177
(
1
), pp.
1
20
.
32.
Aschemann
,
H.
, and
Schindele
,
D.
,
2014
, “
Comparison of Model-Based Approaches to the Compensation of Hysteresis in the Force Characteristic of Pneumatic Muscles
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3620
3629
.
33.
Huang
,
M.
,
Lu
,
Q.
,
Chen
,
W.
,
Qiao
,
J.
, and
Chen
,
X.
,
2019
, “
Design, Analysis, and Testing of a Novel Compliant Underactuated Gripper
,”
Rev. Sci. Instrum.
,
90
(
4
), p.
045122
.
34.
Birglen
,
L.
, and
Gosselin
,
C.
,
2004
, “
Optimal Design of 2-Phalanx Underactuated Fingers
,”
Proceedings of IMG2004: IEEE International Conference on Intelligent Manipulation and Grasping
,
Hong Kong, China
,
Sept. 28–Oct. 2
, pp.
110
116
.
35.
Ballesteros
,
J.
,
Pastor
,
F.
,
GómezDeGabriel
,
J. M.
,
Gandarias
,
J. M.
, and
Urdiales
,
C.
,
2020
, “
Proprioceptive Estimation of Forces Using Underactuated Fingers for Robot-Initiated pHRI
,”
Sensors
,
20
(
10
), pp.
1
13
.
36.
Andrés
,
F. J.
,
Pérez-González
,
A.
,
Rubert
,
C.
,
Fuentes
,
J.
, and
Sospedra
,
B.
,
2018
, “
Comparison of Grasping Performance of Tendon and Linkage Transmission Systems in an Electric-Powered Low-Cost Hand Prosthesis
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011018
.
37.
Shin
,
Y. J.
,
Lee
,
H. J.
,
Kim
,
K.-S.
, and
Kim
,
S.
,
2012
, “
A Robot Finger Design Using a Dual-Mode Twisting Mechanism to Achieve High-Speed Motion and Large Grasping Force
,”
IEEE Trans. Rob.
,
28
(
6
), pp.
1398
1405
.
38.
Zhang
,
T.
,
Jiang
,
L.
, and
Liu
,
H.
,
2012
, “
A Novel Grasping Force Control Strategy for Multi-fingered Prosthetic Hand
,”
J. Cent. South Univ.
,
19
(
6
), pp.
1537
1542
.
39.
Memar
,
A. H.
, and
Esfahani
,
E. T.
,
2020
, “
A Robot Gripper With Variable Stiffness Actuation for Enhancing Collision Safety
,”
IEEE Trans. Ind. Electron.
,
67
(
8
), pp.
6607
6616
.
You do not currently have access to this content.