Abstract

A lot of flapping-wing mechanisms have been proposed to mimic the flight characteristics of biological flyers. However, it is difficult to find studies that consider the unsteady aerodynamics in the design of the flapping-wing mechanisms. This paper presents a systematic approach to optimize the design parameters of a foldable flapping-wing mechanism (FFWM) with a proper aerodynamics model. For the kinematic model, the eight design parameters are defined to determine the reference configuration of the FFWM. The geometrical constraints of each design parameter are derived, and the kinematic analysis is conducted using the plane vector analysis method. The aerodynamic simulation using an unsteady vortex lattice method is performed to compute the aerodynamic loads induced by the flapping motion. An optimization problem is formulated to search for the optimal design parameters that maximize the average lift force considering the required power corresponding to the aerodynamic torques. The parameter optimization problem is solved for three different length ratios of the outer wing to the inner wing using a genetic algorithm. The optimization results show that increasing the outer wing length can cause a significant loss in the required power. The optimal design parameters found by the proposed approach allow the FFWM to generate maximum lift force with appropriate consideration of the required power.

References

1.
Lindhe Norberg
,
U. M.
,
2002
, “
Structure, Form, and Function of Flight in Engineering and the Living World
,”
J. Morphol.
,
252
(
1
), pp.
52
81
.
2.
Shyy
,
W.
,
Aono
,
H.
,
Kang
,
C.-K.
, and
Liu
,
H.
,
2013
,
An Introduction to Flapping Wing Aerodynamics
,
Cambridge University Press
,
New York
.
3.
Lentink
,
D.
,
Müller
,
U. K.
,
Stamhuis
,
E. J.
,
De Kat
,
R.
,
Van Gestel
,
W.
,
Veldhuis
,
L. L. M.
,
Henningsson
,
P.
,
Hedenström
,
A.
,
Videler
,
J. J.
, and
Van Leeuwen
,
J. L.
,
2007
, “
How Swifts Control Their Glide Performance With Morphing Wings
,”
Nature
,
446
(
7139
), pp.
1082
1085
.
4.
Webster
,
F. A.
, and
Griffin
,
D. R.
,
1962
, “
The Role of the Flight Membranes in Insect Capture by Bats
,”
Anim. Behav.
,
10
(
3–4
), pp.
332
340
.
5.
Shyy
,
W.
,
Lian
,
Y.
,
Tang
,
J.
,
Viieru
,
D.
, and
Liu
,
H.
,
2007
,
Aerodynamics of Low Reynolds Number Flyers
,
Cambridge University Press
,
New York
.
6.
Li
,
D.
,
Zhao
,
S.
,
Da Ronch
,
A.
,
Xiang
,
J.
,
Drofelnik
,
J.
,
Li
,
Y.
,
Zhang
,
L.
, et al
,
2018
, “
A Review of Modelling and Analysis of Morphing Wings
,”
Prog. Aerosp. Sci.
,
100
, pp.
46
62
.
7.
Barbarino
,
S.
,
Bilgen
,
O.
,
Ajaj
,
R. M.
,
Friswell
,
M. I.
, and
Inman
,
D. J.
,
2011
, “
A Review of Morphing Aircraft
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
823
877
.
8.
Bishay
,
P. L.
,
Finden
,
R.
,
Recinos
,
S.
,
Alas
,
C.
,
Lopez
,
E.
,
Aslanpour
,
D.
,
Flores
,
D.
, and
Gonzalez
,
E.
,
2019
, “
Development of an SMA-Based Camber Morphing UAV Tail Core Design
,”
Smart Mater. Struct.
,
28
(
7
), p.
075024
.
9.
Chen
,
M.
,
Liu
,
J.
, and
Skelton
,
R. E.
,
2020
, “
Design and Control of Tensegrity Morphing Airfoils
,”
Mech. Res. Commun.
,
103
, p.
103480
.
10.
Ajaj
,
R. M.
,
Friswell
,
M. I.
,
Bourchak
,
M.
, and
Harasani
,
W.
,
2016
, “
Span Morphing Using the GNATSpar Wing
,”
Aerosp. Sci. Technol.
,
53
, pp.
38
46
.
11.
Siddall
,
R.
,
Ortega Ancel
,
A.
, and
Kovač
,
M.
,
2017
, “
Wind and Water Tunnel Testing of a Morphing Aquatic Micro Air Vehicle
,”
Interface Focus
,
7
(
1
), p.
20160085
.
12.
Mills
,
J.
, and
Ajaj
,
R.
,
2017
, “
Flight Dynamics and Control Using Folding Wingtips: An Experimental Study
,”
Aerospace
,
4
(
2
), p.
19
.
13.
Gerdes
,
J. W.
,
Gupta
,
S. K.
, and
Wilkerson
,
S. A.
,
2012
, “
A Review of Bird-Inspired Flapping Wing Miniature Air Vehicle Designs
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021003
.
14.
Ward
,
T. A.
,
Rezadad
,
M.
,
Fearday
,
C. J.
, and
Viyapuri
,
R.
,
2015
, “
A Review of Biomimetic Air Vehicle Research: 1984–2014
,”
Int. J. Micro Air Veh.
,
7
(
3
), pp.
375
394
.
15.
Han
,
J.
,
Hui
,
Z.
,
Tian
,
F.
, and
Chen
,
G.
,
2020
, “
Review on Bio-Inspired Flight Systems and Bionic Aerodynamics
,”
Chin. J. Aeronaut.
,
34
(
7
), pp.
170
186
.
16.
Keennon
,
M.
,
Klingebiel
,
K.
,
Won
,
H.
, and
Andriukov
,
A.
,
2012
, “
Development of the Nano Hummingbird: A Tailless Flapping Wing Micro Air Vehicle
,”
50th AIAA Aerospace Science Meeting Including the New Horizons Forum and Aerospace Exposition
,
Nashville, TN
,
Jan. 9–12
.
17.
Ma
,
K. Y.
,
Chirarattananon
,
P.
,
Fuller
,
S. B.
, and
Wood
,
R. J.
,
2013
, “
Controlled Flight of a Biologically Inspired, Insect-Scale Robot
,”
Science
,
340
(
6132
), pp.
603
607
.
18.
Graule
,
M. A.
,
Chirarattananon
,
P.
,
Fuller
,
S. B.
,
Jafferis
,
N. T.
,
Ma
,
K. Y.
,
Spenko
,
M.
,
Kornbluh
,
R.
, and
Wood
,
R. J.
,
2016
, “
Perching and Takeoff of a Robotic Insect on Overhangs Using Switchable Electrostatic Adhesion
,”
Science
,
352
(
6288
), pp.
972
982
.
19.
Jafferis
,
N. T.
,
Helbling
,
E. F.
,
Karpelson
,
M.
, and
Wood
,
R. J.
,
2019
, “
Untethered Flight of an Insect-Sized Flapping-Wing Microscale Aerial Vehicle
,”
Nature
,
570
(
7762
), pp.
491
495
.
20.
Send
,
W.
,
Fischer
,
M.
,
Jebens
,
K.
,
Mugrauer
,
R.
,
Nagarathinam
,
A.
, and
Scharstein
,
F.
,
2012
, “
Artificial Hinged-Wing Bird With Active Torsion and Partially Linear Kinematics
,”
28th ICAS Congress
,
Brisbane, Australia
,
Sept. 23–28
, pp.
1
10
.
21.
Phan
,
H. V.
, and
Park
,
H. C.
,
2016
, “
Generation of Control Moments in an Insect-Like Tailless Flapping-Wing Micro Air Vehicle by Changing the Stroke-Plane Angle
,”
J. Bionic Eng.
,
13
(
3
), pp.
449
457
.
22.
Karásek
,
M.
,
Muijres
,
F. T.
,
De Wagter
,
C.
,
Remes
,
B. D. W.
, and
de Croon Croon
,
G. C. H. E.
,
2018
, “
A Tailless Aerial Robotic Flapper Reveals That Flies Use Torque Coupling in Rapid Banked Turns
,”
Science
,
361
(
6407
), pp.
1089
1094
.
23.
Nguyen
,
Q.-V.
,
Chan
,
W. L.
, and
Debiasi
,
M.
,
2016
, “
Hybrid Design and Performance Tests of a Hovering Insect-Inspired Flapping-Wing Micro Aerial Vehicle
,”
J. Bionic Eng.
,
13
(
2
), pp.
235
248
.
24.
Li
,
Q.
,
Ji
,
A.
,
Shen
,
H.
,
Li
,
R.
,
Liu
,
K.
,
Zheng
,
X.
,
Shen
,
L.
, and
Han
,
Q.
,
2022
, “
Experimental Study on the Wing Parameter Optimization of Flapping-Wing Aircraft Based on the Clap-and-Fling Mechanism
,”
Int. J. Aeronaut. Space Sci.
,
23
(
2
), pp.
265
276
.
25.
Gerdes
,
J.
,
Holness
,
A.
,
Perez-Rosado
,
A.
,
Roberts
,
L.
,
Greisinger
,
A.
,
Barnett
,
E.
,
Kempny
,
J.
, et al
,
2014
, “
Robo Raven: A Flapping-Wing Air Vehicle With Highly Compliant and Independently Controlled Wings
,”
Soft Rob.
,
1
(
4
), pp.
275
288
.
26.
Folkertsma
,
G. A.
,
Straatman
,
W.
,
Nijenhuis
,
N.
,
Venner
,
C. H.
, and
Stramigioli
,
S.
,
2017
, “
Robird: A Robotic Bird of Prey
,”
IEEE Rob. Autom. Mag.
,
24
(
3
), pp.
22
29
.
27.
Yang
,
W.
,
Wang
,
L.
, and
Song
,
B.
,
2018
, “
Dove: A Biomimetic Flapping-Wing Micro Air Vehicle
,”
Int. J. Micro Air Veh.
,
10
(
1
), pp.
70
84
.
28.
Tobalske
,
B.
, and
Dial
,
K.
,
1996
, “
Flight Kinematics of Black-Billed Magpies and Pigeons Over a Wide Range of Speeds
,”
J. Exp. Biol.
,
199
(
2
), pp.
263
280
.
29.
Shyy
,
W.
,
Berg
,
M.
, and
Ljungqvist
,
D.
,
1999
, “
Flapping and Flexible Wings for Biological and Micro Air Vehicles
,”
Prog. Aerosp. Sci.
,
35
(
5
), pp.
455
505
.
30.
Wang
,
P. L.
, and
Michael McCarthy
,
J.
,
2018
, “
Design of a Flapping Wing Mechanism to Coordinate Both Wing Swing and Wing Pitch
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
025003
.
31.
Yousaf
,
R.
,
Shahzad
,
A.
,
Qadri
,
M. M.
, and
Javed
,
A.
,
2021
, “
Recent Advancements in Flapping Mechanism and Wing Design of Micro Aerial Vehicles
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
235
(
19
), pp.
4425
4446
.
32.
McDonald
,
M.
, and
Agrawal
,
S. K.
,
2010
, “
Design of a Bio-Inspired Spherical Four-Bar Mechanism for Flapping-Wing Micro Air-Vehicle Applications
,”
ASME J. Mech. Rob.
,
2
(
2
), p.
021012
.
33.
Mueller
,
D.
,
Gerdes
,
J. W.
, and
Gupta
,
S. K.
,
2009
, “
Incorporation of Passive Wing Folding in Flapping Wing Miniature Air Vehicles
,”
ASME 2009 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
San Diego, CA
,
Aug. 30–Sept. 2,
pp.
797
805
.
34.
Kim
,
D. Y.
, and
Yun
,
D.
,
2017
, “
The Effect of Folding on Motion Flapping Wing Aero Vehicle
,”
2017 IEEE International Conference on Multisensor Fusion and Integration for Intelligent Systems (MFI)
,
Daegu, South Korea
,
Nov. 16–18
, pp.
597
601
.
35.
Widhiarini
,
S.
,
Park
,
J. H.
,
Yoon
,
B. S.
,
Yoon
,
K. J.
,
Paik
,
I.-H.
,
Kim
,
J. H.
,
Park
,
C. Y.
,
Jun
,
S. M.
, and
Nam
,
C.
,
2016
, “
Bird-Mimetic Wing System of Flapping-Wing Micro Air Vehicle With Autonomous Flight Control Capability
,”
J. Bionic Eng.
,
13
(
3
), pp.
458
467
.
36.
Jiang
,
H.
,
Zhou
,
C.
, and
Xie
,
P.
,
2016
, “
Design and Kinematic Analysis of Seagull Inspired Flapping Wing Robot
,”
2016 IEEE International Conference on Information and Automation (ICIA)
,
Ningbo, China
,
Aug. 1–3
, pp.
1382
1386
.
37.
Ryu
,
Y.
,
Chang
,
J. W.
, and
Chung
,
J.
,
2022
, “
Aerodynamic Characteristics and Flow Structure of Hawkmoth-Like Wing With LE Vein
,”
Int. J. Aeronaut. Space Sci.
,
23
(
1
), pp.
42
51
.
38.
Kim
,
S.
,
Kim
,
M.-S.
,
Kim
,
S.
, and
Suk
,
J.
,
2018
, “
Design, Fabrication, and Flight Test of Articulated Ornithopter
,”
10th International Micro Air Vehicles Conference
,
Melbourne, Australia
,
Nov. 22–23
, pp.
114
119
.
39.
Ryu
,
S. W.
,
Lee
,
J. G.
, and
Kim
,
H. J.
,
2020
, “
Design, Fabrication, and Analysis of Flapping and Folding Wing Mechanism for a Robotic Bird
,”
J. Bionic Eng.
,
17
(
2
), pp.
229
240
.
40.
Wilson
,
C. E.
, and
Sadler
,
P. J.
,
2003
,
Kinematics and Dynamics of Machinery
, 3rd ed.,
Pearson Education
,
New York
.
41.
Chace
,
M. A.
,
1963
, “
Vector Analysis of Linkages
,”
ASME J. Eng. Ind.
,
85
(
3
), pp.
289
297
.
42.
Katz
,
J.
, and
Plotkin
,
A.
,
2001
,
Low-Speed Aerodynamics
, 2nd ed.,
Cambridge University Press
,
Cambridge, UK
.
43.
Ansari
,
S. A.
,
Zbikowski
,
R.
, and
Knowles
,
K.
,
2006
, “
Non-Linear Unsteady Aerodynamic Model for Insect-Like Flapping Wings in the Hover. Part 2: Implementation and Validation
,”
Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng.
,
220
(
3
), pp.
169
186
.
44.
Ramesh
,
K.
,
Gopalarathnam
,
A.
,
Granlund
,
K.
,
Ol
,
M. V.
, and
Edwards
,
J. R.
,
2014
, “
Discrete-Vortex Method With Novel Shedding Criterion for Unsteady Aerofoil Flows With Intermittent Leading-Edge Vortex Shedding
,”
J. Fluid Mech.
,
751
, pp.
500
538
.
45.
Shyy
,
W.
, and
Liu
,
H.
,
2007
, “
Flapping Wings and Aerodynamic Lift: The Role of Leading-Edge Vortices
,”
AIAA J.
,
45
(
12
), pp.
2817
2819
.
46.
Roccia
,
B. A.
,
Preidikman
,
S.
,
Massa
,
J. C.
, and
Mook
,
D. T.
,
2013
, “
Modified Unsteady Vortex-Lattice Method to Study Flapping Wings in Hover Flight
,”
AIAA J.
,
51
(
11
), pp.
2628
2642
.
47.
Nguyen
,
A. T.
,
Kim
,
J.-K.
,
Han
,
J.-S.
, and
Han
,
J.-H.
,
2016
, “
Extended Unsteady Vortex-Lattice Method for Insect Flapping Wings
,”
J. Aircr.
,
53
(
6
), pp.
1709
1718
.
48.
Stempeck
,
A.
,
Hassanalian
,
M.
, and
Abdelkefi
,
A.
,
2018
, “
Aerodynamic Performance of Albatross-Inspired Wing Shape for Marine Unmanned Air Vehicles
,”
2018 Aviation Technology, Integration, and Operations Conference
,
Atlanta, GA
,
June 25–29
, pp.
1
9
.
49.
Nguyen
,
A. T.
,
Tran
,
N. D.
,
Vu
,
T. T.
,
Pham
,
T. D.
,
Vu
,
Q. T.
, and
Han
,
J.-H.
,
2019
, “
A Neural-Network-Based Approach to Study the Energy-Optimal Hovering Wing Kinematics of a Bionic Hawkmoth Model
,”
J. Bionic Eng.
,
16
(
5
), pp.
904
915
.
You do not currently have access to this content.