Abstract

The existing displacement of parallel + serial type hybrid mechanisms is mainly solved by the equivalent serial mechanism (SM) method. However, a large number of lower mobility parallel mechanisms (PMs) that have high coupled motions at the end-effector cannot be equivalent to SMs. Thus, the displacement problem especially for the inverse displacement of this type of hybrid mechanisms has not been well solved. On the basis of this situation, this article takes a 6-degrees-of-freedom (DOFs) 3-UPU + 3R hybrid mechanism as an example to give a general method to solve the displacement problem. First, based on the inverse displacement and pose coupling relationship of the 3-UPU PM, its forward displacement is solved by Sylvester’s dialytic elimination method, and then the forward displacement of the 3-UPU + 3R hybrid mechanism is obtained by the superposition method. Second, by skillfully dealing with the relationship between coupling motions of the 3-UPU PM and the motion of hybrid mechanism, three nonlinear equations containing three unknown motion parameters are obtained, and the inverse displacement problem is solved using Sylvester’s dialytic elimination. The research in this article is valuable in the kinematics modeling of hybrid mechanisms.

References

1.
Tsai
,
L. W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
Wiley
,
New York
.
2.
Merlet
,
J. P.
,
2000
,
Parallel Robots
,
Kluwer Academic Publishers
,
London
.
3.
Sun
,
T.
,
Song
,
Y.
,
Li
,
Y. G.
, and
Zhang
,
J.
,
2010
, “
Workspace Decomposition Based Dimensional Synthesis of a Novel Hybrid Reconfigurable Robot
,”
ASME J. Mech. Rob.
,
2
(
3
), p.
031009
.
4.
Li
,
Y.
,
Zi
,
B.
,
Zhou
,
B.
,
Zhao
,
P.
, and
Ge
,
Q. J.
,
2021
, “
Cable Angle and Minimum Resultant Force Response Analysis of Lower Limb Traction Device for Rehabilitation Robot With Interval Parameters
,”
ASME J. Comput. Inf. Sci. Eng.
,
21
(
2
), p.
021002
.
5.
Zi
,
B.
,
Sun
,
H.
, and
Zhang
,
D.
,
2017
, “
Design, Analysis and Control of a Winding Hybrid-Driven Cable Parallel Manipulator
,”
Robot. Comput.-Integr. Manuf.
,
48
, pp.
196
208
.
6.
Gao
,
Z.
, and
Zhang
,
D.
,
2015
, “
Performance Analysis, Mapping, and Multiobjective Optimization of a Hybrid Robotic Machine Tool
,”
IEEE Trans. Ind. Electron.
,
62
(
1
), pp.
423
433
.
7.
Romdhane
,
L.
,
1999
, “
Design and Analysis of a Hybrid Serial-Parallel Manipulator
,”
Mech. Mach. Theory
,
34
(
7
), pp.
1037
1055
.
8.
Zheng
,
X. Z.
,
Bin
,
H. Z.
, and
Luo
,
Y. G.
,
2004
, “
Kinematic Analysis of a Hybrid Serial-Parallel Manipulator
,”
Int. J. Adv. Manuf. Technol.
,
23
(
11–12
), pp.
925
930
.
9.
Zhao
,
C.
,
Wang
,
K.
,
Zhao
,
H.
,
Guo
,
H. W.
, and
Liu
,
R. Q.
,
2022
, “
Kinematics, Dynamics, and Experiments of n(3RRlS) Reconfigurable Series-Parallel Manipulators for Capturing Space Noncooperative Targets
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061002
.
10.
Zhao
,
C.
,
Guo
,
H. W.
,
Liu
,
R. Q.
,
Deng
,
Z. Q.
,
Li
,
B.
, and
Tian
,
J.
,
2019
, “
Actuation Distribution and Workspace Analysis of a Novel 3(3RRlS) Metamorphic Serial-Parallel Manipulator for Grasping Space Non-Cooperative Targets
,”
Mech. Mach. Theory
,
139
, pp.
424
442
.
11.
Hu
,
B.
,
2014
, “
Complete Kinematics of a Serial-Parallel Manipulator Formed by Two Tricept Parallel Manipulators Connected in Serials
,”
Nonlinear Dyn.
,
78
(
4
), pp.
2685
2698
.
12.
Hu
,
B.
,
Huo
,
Y.
,
Gao
,
J. L.
, and
Zhang
,
D.
,
2022
, “
CGA-Based Approach for the Inverse Displacement of Serial-Parallel Manipulators
,”
Mech. Mach. Theory
,
176
, p.
105011
.
13.
Tang
,
T. F.
,
Fang
,
H. L.
,
Luo
,
H. W.
,
Song
,
Y. Q.
, and
Zhang
,
J.
,
2021
, “
Type Synthesis, Unified Kinematic Analysis and Prototype Validation of a Family of Exechon Inspired Parallel Mechanisms for 5-Axis Hybrid Kinematic Machine Tools
,”
Robot. Comput.-Integr. Manuf.
,
72
, p.
102181
.
14.
Zhang
,
D. S.
,
Xu
,
Y. D.
,
Yao
,
J. T.
,
Hu
,
B.
, and
Zhao
,
Y. S.
,
2017
, “
Kinematics, Dynamics and Stiffness Analysis of a Novel 3-DOF Kinematically/Actuation Redundant Planar Parallel Mechanism
,”
Mech. Mach. Theory
,
116
, pp.
203
219
.
15.
Bi
,
Z. M.
, and
Jin
,
Y.
,
2022
, “
Kinematic Modeling of Exechon Parallel Kinematic Machine
,”
Robot. Comput.-Integr. Manuf.
,
27
(
1
), pp.
186
193
.
16.
He
,
J.
,
Gao F
,
F.
, and
Sun
,
Q.
,
2019
, “
Design and Kinematic Analysis of a Novel Hybrid Kinematic Mechanism With Seven-Degrees-of-Freedom and Variable Topology for Operation in Space
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011003
.
17.
Li
,
Y. B.
,
Wang
,
L.
,
Chen
,
B.
,
Wang
,
Z. S.
,
Sun
,
P.
,
Zheng
,
H.
,
Xu
,
T. T.
, and
Qin
,
S. Y.
,
2020
, “
Optimization of Dynamic Load Distribution of a Serial-Parallel Hybrid Humanoid Arm
,”
Mech. Mach. Theory
,
149
, p.
103792
.
18.
Sun
,
P.
,
Li
,
Y. B.
,
Wang
,
Z. S.
,
Chen
,
K.
,
Chen
,
B.
,
Zeng
,
X.
,
Zhao
,
J.
, and
Yue
,
Y.
,
2020
, “
Inverse Displacement Analysis of a Novel Hybrid Humanoid Robotic Arm
,”
Mech. Mach. Theory
,
147
, p.
10374
.
19.
Ye
,
H.
,
Wang
,
D.
,
Wu
,
J.
,
Yue
,
Y.
, and
Zhou
,
Y.
,
2020
, “
Forward and Inverse Kinematics of a 5-DOF Hybrid Robot for Composite Material Machining
,”
Robot. Comput.-Integr. Manuf.
,
65
, p.
101961
.
20.
Kong
,
X. W.
, and
Gosselin
,
C. M.
,
2006
, “
Type Synthesis of 4-DOF SP-Equivalent Parallel Manipulators: A Virtual Chain Approach
,”
Mech. Mach. Theory
,
41
(
11
), pp.
1306
1319
.
21.
Yuan
,
H.
,
Wang
,
H. G.
,
Li
,
S. J.
, and
Dai
,
J. S.
,
2021
, “
Revelation of Metamorphic Phenomenon Through the Equivalent Mechanisms and Development of the Novel Metamorphic Epicyclic Gear Trains
,”
Mech. Mach. Theory
,
166
, p.
104433
.
22.
Lu
,
Y.
,
Shi
,
Y.
, and
Hu
,
B.
,
2008
, “
Kinematic Analysis of Two Novel 3-UPU I and 3-UPU II PKMs
,”
Rob. Auton. Syst.
,
56
(
4
), pp.
296
305
.
23.
Li
,
Y.
,
Zi
,
B.
,
Yang
,
Z.
, and
Ge
,
Q. J.
,
2021
, “
Combined Kinematic and Static Analysis of an Articulated Lower Limb Traction Device for a Rehabilitation Robotic System
,”
Sci. China Technol. Sci.
,
64
(
6
), pp.
1189
1202
.
24.
Gan
,
D. M.
,
Liao
,
Q. Z.
,
Dai
,
J. S.
,
Wei
,
S. M.
, and
Seneviratne
,
L. D.
,
2009
, “
Forward Displacement Analysis of the General 6-6 Stewart Mechanism Using Gröbner Bases
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1640
1647
.
25.
Hu
,
B.
,
Shi
,
G. Y.
,
Xu
,
L. Z.
, and
Bai
,
P.
,
2020
, “
Reconsideration of Terminal Constraint/Mobility and Kinematics of 5-DOF Hybrid Manipulators Formed by One 2R1T PM and One RR SM
,”
Mech. Mach. Theory
,
149
, p.
103837
.
You do not currently have access to this content.