Abstract

Bistable structures have been widely utilized in soft grippers to reduce the energy required for maintaining grip. Grippers have been investigated in terms of the energy efficiency and accuracy of gripping; however, the limited number of gripping states hinders the holding of objects of various shapes. In this study, an energy-efficient gripper was developed to accommodate both convex and concave shapes using a tristable structure that combines two bistable structures, with shape memory alloy wires used as actuators. Different gripping modes were designed for convex and concave shapes, based on three states of the gripper: gripping, open, and holding. The gripper consisted of a driving part with a leaf spring for a “linear snap action” and a soft finger part with an elastic ring and prestressed fingers. Geometric variables were adjusted to construct a tristable energy curve through experiments and analyses. The fabricated gripper weighed about 140 g and was capable of gripping convex objects of up to 80 g, and concave objects of about 120 g. Only a small amount of energy was consumed in the switching states, and the gripper maintained a stable state while gripping with no energy consumption. It is expected that this research will contribute to lightweight and energy-efficient grippers for application to drones, for example.

References

1.
Xu
,
L.
, and
Gu
,
G.
,
2017
, “
Bioinspired Venus Flytrap : A Dielectric Elastomer Actuated Soft Gripper
,”
Proceedings of the 2017 24th International Conference on Mechatronics and Machine Vision in Practice (M2VIP)
,
Auckland, New Zealand
,
Nov. 21–23
, IEEE, pp.
1
3
.
2.
Hu
,
F.
,
Lyu
,
L.
, and
He
,
Y.
,
2019
, “
A 3D Printed Paper-Based Thermally Driven Soft Robotic Gripper Inspired by Cabbage
,”
Int. J. Precis. Eng. Manuf.
,
20
(
11
), pp.
1915
1928
.
3.
Chen
,
R.
,
Zhang
,
C.
,
Sun
,
Y.
,
Yu
,
T.
,
Shen
,
X.-M.
,
Yuan
,
Z.-A.
, and
Guo
,
J.-L.
,
2021
, “
A Paper Fortune Teller-Inspired Reconfigurable Soft Pneumatic Gripper
,”
Smart Mater. Struct.
,
30
(
4
), p.
045002
.
4.
Zhu
,
M.
,
Mori
,
Y.
,
Wakayama
,
T.
,
Wada
,
A.
, and
Kawamura
,
S.
,
2019
, “
A Fully Multi-Material Three-Dimensional Printed Soft Gripper With Variable Stiffness for Robust Grasping
,”
Soft Robot.
,
6
(
4
), pp.
507
519
.
5.
Ilievski
,
F.
,
Mazzeo
,
A. D.
,
Shepherd
,
R. F.
,
Chen
,
X.
, and
Whitesides
,
G. M.
,
2011
, “
Soft Robotics for Chemists
,”
Angew. Chem.
,
123
(
8
), pp.
1930
1935
.
6.
Lee
,
J.-H.
,
Chung
,
Y. S.
, and
Rodrigue
,
H.
,
2019
, “
Long Shape Memory Alloy Tendon-Based Soft Robotic Actuators and Implementation as a Soft Gripper
,”
Sci. Rep.
,
9
(
1
), p.
11251
.
7.
Shin
,
J. H.
,
Park
,
J. G.
,
Kim
,
D. I.
, and
Yoon
,
H.-S.
,
2021
, “
A Universal Soft Gripper With the Optimized Fin Ray Finger
,”
Int. J. Precis. Eng. Manuf. - Green Technol.
,
8
(
3
), pp.
889
899
.
8.
Wang
,
Z.
,
Torigoe
,
Y.
, and
Hirai
,
S.
,
2017
, “
A Prestressed Soft Gripper: Design, Modeling, Fabrication, and Tests for Food Handling
,”
IEEE Robot. Autom. Lett.
,
2
(
4
), pp.
1909
1916
.
9.
Li
,
H.
,
Luo
,
Y.
, and
Gao
,
X.
,
2019
, “
Preparation of Soft Shape Memory Polymer and Its Application as a Compliant Thermal-Triggered Gripper
,”
Macromol. Chem. Phys.
,
220
(
15
), p.
1900229
.
10.
Milojević
,
A.
,
Linß
,
S.
,
Ćojbašić
,
Ž.
, and
Handroos
,
H.
,
2021
, “
A Novel Simple, Adaptive, and Versatile Soft-Robotic Compliant Two-Finger Gripper With an Inherently Gentle Touch
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011015
.
11.
Tadaki
,
T.
,
Otsuka
,
K.
, and
Shimizu
,
K.
,
1988
, “
Shape Memory Alloys
,”
Annu. Rev. Mater. Sci.
,
18
(
1
), pp.
25
45
.
12.
Kim
,
H.-I.
,
Han
,
M.-W.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2016
, “
Soft Morphing Hand Driven by SMA Tendon Wire
,”
Compos. B. Eng.
,
105
, pp.
138
148
.
13.
Yan
,
S.
,
Liu
,
X.
,
Xu
,
F.
, and
Wang
,
J.
,
2007
, “
A Gripper Actuated by a Pair of Differential SMA Springs
,”
J. Intell. Mater. Syst. Struct.
,
18
(
5
), pp.
459
466
.
14.
Shim
,
J.-E.
,
Quan
,
Y.-J.
,
Wang
,
W.
,
Rodrigue
,
H.
,
Song
,
S.-H.
, and
Ahn
,
S.-H.
,
2015
, “
A Smart Soft Actuator Using a Single Shape Memory Alloy for Twisting Actuation
,”
Smart Mater. Struct.
,
24
(
12
), p.
125033
.
15.
Alfattani
,
R.
, and
Lusk
,
C.
,
2020
, “
Shape-Morphing Using Bistable Triangles With Dwell-Enhanced Stability
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051003
.
16.
Thuruthel
,
T. G.
,
Haider Abidi
,
S.
,
Cianchetti
,
M.
,
Laschi
,
C.
, and
Falotico
,
E.
,
2020
, “
A Bistable Soft Gripper With Mechanically Embedded Sensing and Actuation for Fast Grasping
,”
Proceedings of the 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN)
,
Naples, Italy
,
Aug. 31–Sept. 4
, IEEE, pp.
1049
1054
.
17.
Shintake
,
J.
,
Cacucciolo
,
V.
,
Floreano
,
D.
, and
Shea
,
H.
,
2018
, “
Soft Robotic Grippers
,”
Adv. Mater.
,
30
(
29
), p.
1707035
.
18.
Agarwal
,
A.
,
Viswanathan
,
V.
,
Maheshwari
,
S.
, and
Valdivia y Alvarado
,
P.
,
2018
, “
Effects of Material Properties on Soft Gripper Grasping Forces
,”
Proceedings of the 2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, IEEE, pp.
437
442
.
19.
Bryan
,
P.
,
Kumar
,
S.
, and
Sahin
,
F.
,
2019
, “
Design of a Soft Robotic Gripper for Improved Grasping With Suction Cups
,”
Proceedings of the 2019 IEEE International Conference on Systems, Man and Cybernetics (SMC)
,
Bari, Italy
,
Oct. 6–9
, IEEE, pp.
2405
2410
.
20.
Motzki
,
P.
,
Kunze
,
J.
,
Holz
,
B.
,
York
,
A.
, and
Seelecke
,
S.
,
2015
, “
Adaptive and Energy Efficient SMA-Based Handling Systems
,”
Proceedings of SPIE
,
9431
, p.
943116
. doi.org/10.1117/12.2083580
21.
Meng
,
L.
,
Kang
,
R.
,
Gan
,
D.
,
Chen
,
G.
,
Chen
,
L.
,
Branson
,
D. T.
, and
Dai
,
J. S.
,
2020
, “
A Mechanically Intelligent Crawling Robot Driven by Shape Memory Alloy and Compliant Bistable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061005
.
22.
Welsch
,
F.
,
Kirsch
,
S.-M.
,
Motzki
,
P.
,
Schmidt
,
M.
, and
Seelecke
,
S.
,
2018
, “
Vacuum Gripper System Based on Bistable SMA Actuation
,”
ASME 2018 Conference on Smart Materials, Adaptive Structures and Intelligent Systems
,
San Antonio, TX
,
Sept. 10–12
,
ASME
, SMASIS2018-7980, p.
V001T04A014
.
23.
Mohd Jani
,
J.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Des.
,
56
, pp.
1078
1113
.
24.
Smooth-On, Inc.
,
2022
,
Ecoflex Series
,
Smooth-On, Inc.
https://www.smooth-on.com/tb/files/ECOFLEX_SERIES_TB.pdf. Accessed August 18, 2022.
25.
Ashby
,
M. F.
, and
Jones
,
D. R. H.
,
2012
,
Engineering Materials 1: An Introduction to Properties, Applications and Design
, 4th ed.,
Butterworth-Heinemann
,
Oxford, UK
, pp.
47
53
.
26.
Yoon
,
H.-S.
,
2022
, “
Energy-Efficient Tristable Soft Gripper Using Shape Memory Alloy Wires
,” https://youtu.be/wXVO4YamjOk, Accessed October 13, 2022.
27.
Grellmann
,
H.
,
Lohse
,
F. M.
,
Kamble
,
V. G.
,
Winger
,
H.
,
Nocke
,
A.
,
Hickmann
,
R.
,
Wießner
,
S.
, and
Cherif
,
C.
,
2021
, “
Fundamentals and Working Mechanisms of Artificial Muscles With Textile Application in the Loop
,”
Smart Mater. Struct.
,
31
(
2
), p.
023001
.
28.
DYNALLOY, Inc.
,
2023
, “
Technical Characteristics FLEXINOL® Actuator Wires
,” https://www.dynalloy.com/tech_data_wire.php, Accessed February 22, 2023.
29.
Hu
,
B.
,
Liu
,
F.
,
Mao
,
B.
,
Chen
,
Z.
, and
Yu
,
H.
,
2022
, “
Modeling and Position Control Simulation Research on Shape Memory Alloy Spring Actuator
,”
Micromachines
,
13
(
2
), p.
178
.
30.
Kim
,
H.-I.
,
2016
, “
Development of Soft Robot Hand With Smart Soft Composite and Shape Memory Alloy
,”
Master dissertation
,
Seoul National University
,
Seoul, Soth Korea
.
You do not currently have access to this content.