Abstract

Minimally invasive procedures employ continuum manipulators, however internal human anatomy presents challenges relating to size, dexterity, and workspace for these manipulators. This paper presents modeling, kinematic analysis, prototyping, and characterization of a micro-robotic manipulator for transurethral palpation of bladder tissue. The proposed micro-robot consists of two subsystems: a tendon-driven continuum segment with an elastic tube encompassing each joint for compliance and structural integrity, and a hyper-spherical joint ensuring higher dexterity and manipulability with a comprehensive actuation and modeling approach. The forward kinematics follow the Denavit–Hartenberg formulation. A developed differential Jacobian inverse kinematics formulation prevents motion singularities for desired poses while operating in the confined space. The simulated kinematic results confirm the dexterity and reach of the proposed micro-robot. A strain energy quasi-static model is developed for a single continuum module. The model is evaluated for tension-bend angle relationships as function of tube material and geometry, and joint length. Limited functionality continuum modules (4 mm outside diameter) with four different joint lengths, (3, 6, 9, 12) mm, are prototyped for tension-bend angle characterization using a computer vision outfitted experimental setup. An equivalent bending modulus relationship for the joint system for selected joint length values and bend angles is developed using experimental results. The tension-bend angle response is nonlinear and function of tube properties and geometry, joint geometry, and their interactions. The comparison of the experimental and quasi-static model results shows high fidelity for use in predicting the robot continuum segment behavior.

References

1.
Urinary Incontinence
.”
Mayo Clinic
. https://www.mayoclinic.org/diseases-conditions/urinary-incontinence/symptoms-causes/syc-20352808. Accessed October 17, 2022.
2.
Causes of Urinary Incontinence
.”
Treatments, and More, Mary Ellen Ellis
. https://www.healthline.com/health/urinary-incontinence. Accessed October 17, 2022.
3.
What is Urinary Incontinence?
Urology Care Foundation
. https://www.urologyhealth.org/urology-a-z/u/urinary-incontinence. Accessed October 17, 2022.
4.
Surgery for Female Urinary Incontinence
.”
Marcus Carey
. https://drmarcuscarey.com/bladder-problems/surgery-for-female-urinary-incontinence/. Accessed October 17, 2022.
5.
Milsom
,
I.
,
Coyne
,
K. S.
,
Nicholson
,
S.
,
Kvasz
,
M.
,
Chen
,
C.-I.
, and
Wein
,
A. J.
,
2014
, “
Global Prevalence and Economic Burden of Urgency Urinary Incontinence: A Systematic Review
,”
Eur. Urol.
,
65
(
1
), pp.
79
95
.
6.
Nenadic
,
I.
,
Mynderse
,
L.
,
Husmann
,
D.
,
Mehrmohammadi
,
M.
,
Bayat
,
M.
,
Singh
,
A.
,
Denis
,
M.
,
Urban
,
M.
,
Alizad
,
A.
, and
Fatemi
,
M.
,
2016
, “
Noninvasive Evaluation of Bladder Wall Mechanical Properties as a Function of Filling Volume: Potential Application in Bladder Compliance Assessment
,”
PLoS One
,
11
(
6
), p.
e0157818
.
7.
Li
,
C.
,
Guan
,
G.
,
Zhang
,
F.
,
Song
,
S.
,
Wang
,
R. K.
,
Huang
,
Z.
, and
Nabi
,
G.
,
2014
, “
Quantitative Elasticity Measurement of Urinary Bladder Wall Using Laser-Induced Surface Acoustic Waves
,”
Biomed. Opt. Express
,
5
(
12
), pp.
4313
4328
.
8.
Soebadi
,
M. A.
,
Weydts
,
T.
,
Brancato
,
L.
,
Hakim
,
L.
,
Puers
,
R.
, and
De Ridder
,
D.
,
2020
, “
Novel Implantable Pressure and Acceleration Sensor for Bladder Monitoring
,”
Int. J. Urol.
,
27
(
6
), pp.
543
550
.
9.
Sozer
,
C.
,
Ghorbani
,
M.
,
Alcan
,
G.
,
Uvet
,
H.
,
Unel
,
M.
, and
Kosar
,
A.
,
2017
, “
Design, Prototyping and Control of a Flexible Cystoscope for Biomedical Applications
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
224
(
1
), p.
012050
.
10.
Georgescu
,
D.
,
Alexandrescu
,
E.
,
Mulţescu
,
R.
, and
Geavlete
,
B.
,
2016
, “Cystoscopy and Urinary Bladder Anatomy,”
Endoscopic Diagnosis and Treatment in Urinary Bladder Pathology
,
P. A.
Geavlete
, ed.,
Elsevier
,
Cambridge, MA
, pp.
1
24
.
11.
Lee
,
H.
,
Choi
,
Y.
, and
Yi
,
B.-J.
,
2011
, “
Stackable 4-BAR Manipulators for Single Port Access Surgery
,”
IEEE/ASME Trans. Mechatron.
,
17
(
1
), pp.
157
166
.
12.
Cheon
,
B.
,
Gezgin
,
E.
,
Ji
,
D. K.
,
Tomikawa
,
M.
,
Hashizume
,
M.
,
Kim
,
H.-J.
, and
Hong
,
J.
,
2014
, “
A Single Port Laparoscopic Surgery Robot With High Force Transmission and a Large Workspace
,”
Surg. Endoscopy
,
28
(
9
), pp.
2719
2729
.
13.
Hickling
,
D. R.
,
Sun
,
T.-T.
, and
Wu
,
X.-R.
,
2017
, “Anatomy and Physiology of the Urinary Tract: Relation to Host Defense and Microbial Infection,”
Urinary Tract Infections: Molecular Pathogenesis and Clinical Management
,
M. A.
Mulvey
,
A. E.
Stapleton
, and
D. J.
Klumpp
, eds.,
American Society for Microbiology
,
Washington, DC
, pp.
1
25
.
14.
Overactive Bladder
.”
The Urology Group
. https://www.urologygroupvirginia.com/urologic-care/incontinence/overactive-bladder-sensory-urgency. Accessed October 17, 2022.
15.
Simaan
,
N.
,
Yasin
,
R. M.
, and
Wang
,
L.
,
2018
, “
Medical Technologies and Challenges of Robot-Assisted Minimally Invasive Intervention and Diagnostics
,”
Ann. Rev. Contr. Rob. Autonom. Syst.
,
1
, pp.
465
490
.
16.
Jun
,
S.
,
Zhou
,
X.
,
Ramsey
,
D. K.
, and
Krovi
,
V. N.
,
2015
, “
Smart Knee Brace Design With Parallel Coupled Compliant Plate Mechanism and Pennate Elastic Band Spring
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041024
.
17.
Garriga-Casanovas
,
A.
, and
Rodriguez y Baena
,
F.
,
2019
, “
Kinematics of Continuum Robots With Constant Curvature Bending and Extension Capabilities
,”
ASME J. Mech. Rob.
,
11
(
1
), p.
011010
.
18.
Jiang
,
A.
,
Adejokun
,
S.
,
Faragasso
,
A.
,
Althoefer
,
K.
,
Nanayakkara
,
T.
, and
Dasgupta
,
P.
,
2014
, “
The Granular Jamming Integrated Actuator
,”
2014 International Conference on Advanced Robotics and Intelligent Systems (ARIS)
,
Taipei, Taiwan
,
June 4–8
,
IEEE
, pp.
12
17
.
19.
Adejokun
,
S. A.
,
2017
, “Flexible-Continuum Robot for Bladder Tissue Diagnostics,” Master’s thesis, The University of Texas, Arlington, TX.
20.
Goldman
,
R. E.
,
Bajo
,
A.
,
MacLachlan
,
L. S.
,
Pickens
,
R.
,
Herrell
,
S. D.
, and
Simaan
,
N.
,
2012
, “
Design and Performance Evaluation of a Minimally Invasive Telerobotic Platform for Transurethral Surveillance and Intervention
,”
IEEE Trans. Biomed. Eng.
,
60
(
4
), pp.
918
925
.
21.
Simaan
,
N.
,
Xu
,
K.
,
Wei
,
W.
,
Kapoor
,
A.
,
Kazanzides
,
P.
,
Taylor
,
R.
, and
Flint
,
P.
,
2009
, “
Design and Integration of a Telerobotic System for Minimally Invasive Surgery of the Throat
,”
Int. J. Rob. Res.
,
28
(
9
), pp.
1134
1153
.
22.
Hendrick
,
R.
,
Mitchell
,
C.
,
Herrell
,
S.
, and
Iii
,
R. W.
,
2014
, “
Concentric Tube Robots for Transurethral Prostate Surgery: Matching the Workspace to the Endoscopic Field of View
,”
The Hamlyn Symposium on Medical Robotics
,
London, UK
,
July 12–15
, p.
23
.
23.
Bodani
,
V.
,
Azimian
,
H.
,
Looi
,
T.
, and
Drake
,
J.
,
2014
, “
Design and Evaluation of a Concentric Tube Robot for Minimally-Invasive Endoscopic Paediatric Neurosurgery
,”
The Hamlyn Symposium on Medical Robotics, Vol. 1
,
London, UK
,
July 12–15
, pp.
25
26
.
24.
Orekhov
,
A.
,
Abah
,
C.
, and
Simaan
,
N.
,
2018
, “Snake-Like Robots for Minimally Invasive, Single-Port, and Intraluminal Surgeries,”
The Encyclopedia of Medical Robotics
,
R.
Patel
, ed.,
World Scientific
,
Singapore
, pp.
203
243
.
25.
Haber
,
G.-P.
,
White
,
M. A.
,
Autorino
,
R.
,
Escobar
,
P. F.
,
Kroh
,
M. D.
,
Chalikonda
,
S.
,
Khanna
,
R.
, et al.,
2010
, “
Novel Robotic Da Vinci Instruments for Laparoendoscopic Single-Site Surgery
,”
Urology
,
76
(
6
), pp.
1279
1282
.
26.
Vitiello
,
V.
,
Lee
,
S.-L.
,
Cundy
,
T. P.
, and
Yang
,
G.-Z.
,
2012
, “
Emerging Robotic Platforms for Minimally Invasive Surgery
,”
IEEE Rev. Biomed. Eng.
,
6
, pp.
111
126
.
27.
Marcus
,
H. J.
,
Seneci
,
C. A.
,
Payne
,
C. J.
,
Nandi
,
D.
,
Darzi
,
A.
, and
Yang
,
G. -Z.
,
2014
, “
Robotics in Keyhole Transcranial Endoscope-Assisted Microsurgery: A Critical Review of Existing Systems and Proposed Specifications for New Robotic Platforms
,”
Oper. Neurosurg.
,
10
(
1
), pp.
84
96
.
28.
Yohannes
,
P.
,
Rotariu
,
P.
,
Pinto
,
P.
,
Smith
,
A. D.
, and
Lee
,
B. R.
,
2002
, “
Comparison of Robotic Versus Laparoscopic Skills: Is There a Difference in the Learning Curve
,”
Urology
,
60
(
1
), pp.
39
45
.
29.
Hanzly
,
M.
,
Frederick
,
A.
,
Creighton
,
T.
,
Atwood
,
K.
,
Mehedint
,
D.
,
Kauffman
,
E. C.
,
Kim
,
H. L.
, and
Schwaab
,
T.
,
2015
, “
Learning Curves for Robot-Assisted and Laparoscopic Partial Nephrectomy
,”
J. Endourol.
,
29
(
3
), pp.
297
303
.
30.
Baek
,
S.-J.
, and
Kim
,
S.-H.
,
2014
, “
Robotics in General Surgery: An Evidence-Based Review
,”
Asian J. Endosc. Surg.
,
7
(
2
), pp.
117
123
.
31.
Grimsby
,
G. M.
,
Dwyer
,
M. E.
,
Jacobs
,
M. A.
,
Ost
,
M. C.
,
Schneck
,
F. X.
,
Cannon
,
G. M.
, and
Gargollo
,
P. C.
,
2015
, “
Multi-institutional Review of Outcomes of Robot-Assisted Laparoscopic Extravesical Ureteral Reimplantation
,”
J. Urol.
,
193
(
5S
), pp.
1791
1795
.
32.
Rattner
,
D.
, and
Kalloo
,
A.
,
2006
, “
ASGE/SAGES Working Group on Natural Orifice Translumenal Endoscopic Surgery
,”
Surg. Endosc. Other Interv. Tech.
,
20
(
2
), pp.
329
333
.
33.
Romanelli
,
J. R.
, and
Earle
,
D. B.
,
2009
, “
Single-Port Laparoscopic Surgery: An Overview
,”
Surg. Endosc.
,
23
(
7
), pp.
1419
1427
.
34.
Tiwari
,
M. M.
,
Reynoso
,
J. F.
,
Lehman
,
A. C.
,
Tsang
,
A. W.
,
Farritor
,
S. M.
, and
Oleynikov
,
D.
,
2010
, “
In Vivo Miniature Robots for Natural Orifice Surgery: State of the Art and Future Perspectives
,”
World J. Gastrointest. Surg.
,
2
(
6
), p.
217
.
35.
Samarasekera
,
D.
, and
Kaouk
,
J. H.
,
2014
, “
Robotic Single Port Surgery: Current Status and Future Considerations
,”
Indian J. Urol.
,
30
(
3
), p.
326
.
36.
Desai
,
J. P.
,
2018
,
Encyclopedia of Medical Robotics, The (In 4 Volumes)
,
World Scientific
,
Singapore
.
37.
Degani
,
A.
,
Choset
,
H.
,
Wolf
,
A.
, and
Zenati
,
M. A.
,
2006
, “
Highly Articulated Robotic Probe for Minimally Invasive Surgery
,”
Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006
,
Orlando, FL
,
May 15–19
,
IEEE
, pp.
4167
4172
.
38.
Kumat
,
S. S.
, and
Shiakolas
,
P. S.
,
2022
, “
Design, Inverted Vat Photopolymerization 3D Printing, and Initial Characterization of a Miniature Force Sensor for Localized In Vivo Tissue Measurements
,”
3D Print. Med.
,
8
(
1
), pp.
1
14
.
39.
Adejokun
,
S. A.
,
Kumat
,
S. S.
, and
Shiakolas
,
P. S.
,
2022
, “
A Microrobot With an Attached Micro-Force Sensor for Natural Orifice Access to the Bladder Interior Wall
,”
ASME 2022 International Mechanical Engineering Congress and Exposition
,
Columbus, OH
,
Oct. 30–Nov. 3
,
40.
Adejokun
,
S.
,
Kumat
,
S.
, and
Shiakolas
,
P.
,
2023
, “
A Microrobot With an Attached Micro-Force Sensor for Transurethral Access to the Bladder Interior Wall
,”
J. Eng. Sci. Med. Diagn. Ther.
,
6
(
3
), pp.
1
29
.
41.
Siciliano
,
B.
,
1990
, “
Kinematic Control of Redundant Robot Manipulators: A Tutorial
,”
J. Intell. Rob. Syst.
,
3
(
3
), pp.
201
212
.
42.
Schreiber
,
L.-T.
, and
Gosselin
,
C.
,
2017
, “
Passively Driven Redundant Spherical Joint With Very Large Range of Motion
,”
ASME J. Mech. Rob.
,
9
(
3
), p.
031014
.
43.
Engelsgjerd
,
J. S.
, and
Deibert
,
C. M.
,
2022
, http://europepmc.org/books/NBK493180Cystoscopy, StatPearls Publishing, Treasure Island, FL.
44.
Walker
,
I. D.
,
2013
, “
Continuous Backbone ‘Continuum’ Robot Manipulators
,”
Int. Sch. Res. Notices
,
2013
, p.
726506
.
45.
Bajo
,
A.
, and
Simaan
,
N.
,
2016
, “
Hybrid Motion/Force Control of Multi-backbone Continuum Robots
,”
Int. J. Rob. Res.
,
35
(
4
), pp.
422
434
.
46.
Craig
,
J. J.
,
2005
,
Introduction to Robotics: Mechanics and Control
,
Pearson Educacion
,
London, UK
.
47.
Ozturk
,
N. K.
, and
Kavakli
,
A. S.
,
2016
, “
Use of Bladder Volume Measurement Assessed With Ultrasound to Predict Postoperative Urinary Retention
,”
North. Clin. Istanb.
,
3
(
3
), p.
209
.
48.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2020
,
Robot Modeling and Control
,
John Wiley & Sons
,
Hoboken, NJ
.
49.
Nenchev
,
D. N.
,
Goswami
,
A.
, and
Vadakkepat
,
P.
,
2018
, “Differential Kinematics,”
Humanoid Robotics: A Reference
,
A.
Goswami
and
P.
Vadakkepat
, eds.,
Springer
,
Berlin, Germany
, pp.
1
47
.
50.
Buss
,
S. R.
,
2004
, “
Introduction to Inverse Kinematics With Jacobian Transpose, Pseudoinverse and Damped Least Squares Methods
,”
IEEE J. Rob. Autom.
,
17
(
1–19
), pp.
1
6
.
51.
Ogden
,
R. W.
,
1997
,
Non-Linear Elastic Deformations
,
Courier Corporation
,
North Chelmsford, MA
.
52.
Treloar
,
L. G.
,
1975
,
The Physics of Rubber Elasticity
,
Oxford University Press
,
Oxford, UK
.
53.
Polygerinos
,
P.
,
Wang
,
Z.
,
Overvelde
,
J. T.
,
Galloway
,
K. C.
,
Wood
,
R. J.
,
Bertoldi
,
K.
, and
Walsh
,
C. J.
,
2015
, “
Modeling of Soft Fiber-Reinforced Bending Actuators
,”
IEEE Trans. Rob.
,
31
(
3
), pp.
778
789
.
54.
Rivlin
,
R. S.
, and
Saunders
,
D.
,
1997
, “
Large Elastic Deformations of Isotropic Materials
.” https://link.springer.com/chapter/10.1007/978-1-4612-2416-7_12, Collected Papers of RS Rivlin, Springer, pp.
157
194
.
55.
Properties: Silicone Rubber
.”
AZoNetwork UK Ltd
. https://www.azom.com/properties.aspx?ArticleID=920. Accessed April 4, 2022.
56.
Wadee
,
M. K.
,
Wadee
,
M. A.
,
Bassom
,
A. P.
, and
Aigner
,
A. A.
,
2006
, “
Longitudinally Inhomogeneous Deformation Patterns in Isotropic Tubes Under Pure Bending
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
462
(
2067
), pp.
817
838
.
57.
Rotter
,
J. M.
,
Sadowski
,
A. J.
, and
Chen
,
L.
,
2014
, “
Nonlinear Stability of Thin Elastic Cylinders of Different Length Under Global Bending
,”
Int. J. Solids Struct.
,
51
(
15–16
), pp.
2826
2839
.
58.
Tabb
,
A.
, and
Yousef
,
K. M. A.
,
2015
, “
Parameterizations for Reducing Camera Reprojection Error for Robot-World Hand-Eye Calibration
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
,
IEEE
, pp.
3030
3037
.
59.
Akima
,
H.
,
1978
, “
A Method of Bivariate Interpolation and Smooth Surface Fitting for Irregularly Distributed Data Points
,”
ACM Trans. Math. Softw. (TOMS)
,
4
(
2
), pp.
148
159
.
60.
Heinzl
,
H.
, and
Mittlböck
,
M.
,
2002
, “
Adjusted R2 Measures for the Inverse Gaussian Regression Model
,”
Comput. Statist.
,
17
(
4
), pp.
525
544
.
You do not currently have access to this content.