Abstract

The transportation of large-scale objects in a narrow space is a challenging, but useful application for mobile robots. We have developed a three-mobile-robot system to cooperatively lift, support, and transport a large object on a mobile robot system. To facilitate the manipulation involved with loading an object onto the robots, where the robots must maintain firm contact with the object and anchor at its location, we designed an adaptable mechanism for the object-loading platform and a liftable brake to ensure that the robot remains stationary when necessary. Furthermore, each robot is designed to act as an omnidirectional wheel; therefore, all three robots can work as an omnidirectional block when collectively loading an object. The kinematic constraints of the object–robot system and forward kinematics of the robots’ cooperative motion are proposed, and experiments are conducted to confirm the designed mechanisms and confirm that the robots can load an object and cooperatively transport it along the expected trajectory.

References

1.
Zhou
,
H.
,
Chou
,
W.
,
Tuo
,
W.
,
Rong
,
Y.
, and
Xu
,
S.
,
2020
, “
Mobile Manipulation Integrating Enhanced AMCL High-Precision Location and Dynamic Tracking Grasp
,”
Sensors
,
20
(
22
), p.
6697
.
2.
Kulecki
,
B.
,
Młodzikowski
,
K.
,
Staszak
,
R.
, and
Belter
,
D.
,
2021
, “
Practical Aspects of Detection and Grasping Objects by a Mobile Manipulating Robot
,”
Ind. Robot. Int. J. Robot. Res. Appl.
,
48
(
5
), pp.
688
699
.
3.
Siao
,
C.-Y.
,
Lin
,
J.-W.
, and
Chang
,
R.-G.
,
2020
, “
The Design and Implementation of a Delivery System
,”
2020 IEEE Eurasia Conference on IOT, Communication and Engineering (ECICE)
,
Yunlin, Taiwan
,
Oct. 23–25
, IEEE, pp.
160
163
.
4.
Dubova
,
A.
,
Bushuev
,
D.
, and
Rubanov
,
V.
,
2020
, “
Virtual Prototype of AGV-Based Warehouse System
,”
2020 International Multi-Conference on Industrial Engineering and Modern Technologies (FarEastCon)
,
Vladivostok, Russia
,
Oct. 6–9
, IEEE, pp.
1
6
.
5.
Krivic
,
S.
, and
Piater
,
J.
,
2019
, “
Pushing Corridors for Delivering Unknown Objects With a Mobile Robot
,”
Autonom. Rob.
,
43
(
6
), pp.
1435
1452
.
6.
Slawiñski
,
E.
,
Moya
,
V.
,
Santiago
,
D.
, and
Mut
,
V.
,
2019
, “
Force and Position–Velocity Coordination for Delayed Bilateral Teleoperation of a Mobile Robot
,”
Robotica
,
37
(
10
), pp.
1768
1784
.
7.
Chang
,
K.-S.
,
Holmberg
,
R.
, and
Khatib
,
O.
,
2000
, “
The Augmented Object Model: Cooperative Manipulation and Parallel Mechanism Dynamics
,”
Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No. 00CH37065)
,
San Francisco, CA
,
Apr. 24–28
, Vol. 1, IEEE, pp.
470
475
.
8.
Petitti
,
A.
,
Franchi
,
A.
,
Di Paola
,
D.
, and
Rizzo
,
A.
,
2016
, “
Decentralized Motion Control for Cooperative Manipulation With a Team of Networked Mobile Manipulators
,”
2016 IEEE International Conference on Robotics and Automation (ICRA)
,
Stockholm, Sweden
,
May 16–21
, IEEE, pp.
441
446
.
9.
Hichri
,
B.
,
Fauroux
,
J.-C.
,
Adouane
,
L.
,
Doroftei
,
I.
, and
Mezouar
,
Y.
,
2019
, “
Design of Cooperative Mobile Robots for Co-Manipulation and Transportation Tasks
,”
Robot. Comput. Integr. Manuf.
,
57
, pp.
412
421
.
10.
Endo
,
M.
,
Hirose
,
K.
,
Hirata
,
Y.
,
Kosuge
,
K.
,
Sugahara
,
Y.
,
Suzuki
,
K.
,
Murakami
,
K.
,
Nakamura
,
K.
,
Nakanishi
,
M.
, and
Kanbayashi
,
T.
,
2009
, “
A Coordinated Control Algorithm Based on the Caster-Like Motion for a Car Transportation System-ICART
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, IEEE, pp.
2350
2355
.
11.
Amanatiadis
,
A.
,
Henschel
,
C.
,
Birkicht
,
B.
,
Andel
,
B.
,
Charalampous
,
K.
,
Kostavelis
,
I.
,
May
,
R.
, and
Gasteratos
,
A.
,
2015
, “
Avert: An Autonomous Multi-robot System for Vehicle Extraction and Transportation
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, IEEE,pp. 1662–1669.
12.
Fan
,
C.
,
Shirafuji
,
S.
, and
Ota
,
J.
,
2019
, “
Modal Planning for Cooperative Non-Prehensile Manipulation by Mobile Robots
,”
Appl. Sci.
,
9
(
3
), p.
462
.
13.
Fan
,
C.
,
Shirafuji
,
S.
, and
Ota
,
J.
,
2018
, “
Least Action Sequence Determination in the Planning of Non-Prehensile Manipulation With Multiple Mobile Robots
,”
International Conference on Intelligent Autonomous Systems
,
Baden-Baden, Germany
,
June 11–15
, Springer, pp.
174
185
.
14.
Sakuyama
,
T.
,
Figueroa Heredia
,
J. D.
,
Ogata
,
T.
,
Hara
,
T.
, and
Ota
,
J.
,
2014
, “
Object Transportation by Two Mobile Robots With Hand Carts
,”
Int. Sch. Res. Notices
,
2014
, pp.
1
15
.
15.
Pereira
,
G. A.
,
Pimentel
,
B. S.
,
Chaimowicz
,
L.
, and
Campos
,
M. F.
,
2002
, “
Coordination of Multiple Mobile Robots in an Object Carrying Task Using Implicit Communication
,”
Proceedings 2002 IEEE International Conference on Robotics and Automation (Cat. No. 02CH37292)
,
Washington, DC
,
May 11–15
, Vol. 1, IEEE, pp.
281
286
.
16.
Bicho
,
E.
,
Louro
,
L.
, and
Erlhagen
,
W.
,
2004
, “
Coordinated Transportation With Minimal Explicit Communication Between Robots
,”
5th IFAC Symposium on Intelligent Autonomous Vehicles (IAV 2004)
,
Lisboa, Portugal
,
July 5–7
.
17.
Ahmadabadi
,
M. N.
, and
Nakano
,
E.
,
2001
, “
A” Constrain and Move” Approach to Distributed Object Manipulation
,”
IEEE. Trans. Rob. Autom.
,
17
(
2
), pp.
157
172
.
18.
Li
,
G.
,
Lin
,
R.
,
Li
,
M.
,
Sun
,
R.
, and
Piao
,
S.
,
2019
, “
A Master-Slave Separate Parallel Intelligent Mobile Robot Used for Autonomous Pallet Transportation
,”
Appl. Sci.
,
9
(
3
), p.
368
.
19.
Lee
,
L.-F.
, and
Krovi
,
V. N.
,
2008
, “
Performance Evaluation of Potential Field Based Distributed Motion Planning Methods for Robot Collectives
,”
Motion Planning, InTech
,
X. J.
Jing
, ed. pp.
227
242
.
20.
Bhatt
,
R. M.
,
Tang
,
C. P.
, and
Krovi
,
V. N.
,
2009
, “
Formation Optimization for a Fleet of Wheeled Mobile Robots–a Geometric Approach
,”
Rob. Auton. Syst.
,
57
(
1
), pp.
102
120
.
21.
Khatib
,
O.
,
Yokoi
,
K.
,
Chang
,
K.
,
Ruspini
,
D.
,
Holmberg
,
R.
, and
Casal
,
A.
,
1996
, “
Vehicle/Arm Coordination and Multiple Mobile Manipulator Decentralized Cooperation
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96
,
Osaka, Japan
,
Nov. 8
, Vol. 2, IEEE, pp.
546
553
.
22.
Tsai
,
C.-C.
,
Wu
,
H.-L.
,
Tai
,
F.-C.
, and
Chen
,
Y.-S.
,
2016
, “
Decentralized Cooperative Transportation With Obstacle Avoidance Using Fuzzy Wavelet Neural Networks for Uncertain Networked Omnidirectional Multi-robots
,”
2016 12th IEEE International Conference on Control and Automation (ICCA)
,
Kathmandu, Nepal
,
June 1–3
, IEEE, pp.
978
983
.
23.
Kashiwazaki
,
K.
,
Yonezawa
,
N.
,
Endo
,
M.
,
Kosuge
,
K.
,
Sugahara
,
Y.
,
Hirata
,
Y.
,
Kanbayashi
,
T.
,
Suzuki
,
K.
,
Murakami
,
K.
, and
Nakamura
,
K.
,
2011
, “
A Car Transportation System Using Multiple Mobile Robots: ICART II
,”
2011 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Francisco, CA
,
Sept. 25–30
, IEEE, pp.
4593
4600
.
24.
Osumi
,
H.
,
1996
, “
Cooperative Strategy for Multiple Mobile Manipulators
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems. IROS’96
,
Osaka, Japan
,
Nov. 8
, Vol. 2, IEEE, pp.
554
559
.
25.
Miyata
,
N.
,
Ota
,
J.
,
Aiyama
,
Y.
,
Sasaki
,
J.
, and
Arai
,
T.
,
1997
, “
Cooperative Transport System With Regrasping Car-Like Mobile Robots
,”
Proceedings of the 1997 IEEE/RSJ International Conference on Intelligent Robot and Systems. Innovative Robotics for Real-World Applications. IROS’97
, Vol.
3
,
IEEE
, pp.
1754
1761
.
26.
Tang
,
C. P.
, and
Krovi
,
V.
,
2004
, “
Manipulability-Based Configuration Evaluation of Cooperative Payload Transport by Mobile Robot Collectives
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, Vol. 46954, pp.
1273
1282
.
27.
Bhatt
,
R.
,
Tang
,
C. P.
,
Abou-Samah
,
M.
, and
Krovi
,
V.
,
2005
, “
A Screw-Theoretic Analysis Framework for Payload Manipulation by Mobile Manipulator Collectives
,”
2005 ASME International Mechanical Engineering Congress and Exposition
,
Orlando, FL
,
Nov. 5–11
, Vol. 42169, pp.
1597
1606
.
28.
Abou-Samah
,
M.
,
Tang
,
C. P.
,
Bhatt
,
R. M.
, and
Krovi
,
V.
,
2006
, “
A Kinematically Compatible Framework for Cooperative Payload Transport by Nonholonomic Mobile Manipulators
,”
Auton. Robots
,
21
(
3
), pp.
227
242
.
29.
Stilwell
,
D. J.
, and
Bay
,
J. S.
,
1993
, “
Toward the Development of a Material Transport System Using Swarms of Ant-Like Robots
,”
Proceedings of the IEEE 1993 International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, IEEE, pp.
766
771
.
30.
Endo
,
M.
,
Hirose
,
K.
,
Hirata
,
Y.
,
Kosuge
,
K.
,
Kanbayashi
,
T.
,
Oomoto
,
M.
,
Akune
,
K.
,
Arai
,
H.
,
Shinoduka
,
H.
, and
Suzuki
,
K.
,
2008
, “
A Car Transportation System by Multiple Mobile Robots-icart
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
, IEEE, pp.
2795
2801
.
31.
Wang
,
Z.
, and
Schwager
,
M.
,
2016
, “Multi-robot Manipulation Without Communication,”
Distributed Autonomous Robotic Systems. Springer Tracts in Advanced Robotics
,
N. Y.
Chong
, and
Y. J.
Cho
, eds.,
Springer
,
Tokyo, Japan
, pp.
135
149
.
32.
Soares
,
R.
, and
Bicho
,
E.
,
2006
, “
Coordinated Transportation of a Large Object by a Team of Three Robots
,”
3rd International Conference on Informatics in Control, Automation and Robotics (ICINCO 2006)-Workshop on Multi-Agent Robotic Systems
,
Setúbal, Portugal
,
Aug. 1–2
, pp.
66
79
.
33.
Khatib
,
O.
,
1999
, “
Mobile Manipulation: The Robotic Assistant
,”
Rob. Auton. Syst.
,
26
(
2–3
), pp.
175
183
.
34.
Xiao
,
J.
,
1993
, “
Automatic Determination of Topological Contacts in the Presence of Sensing Uncertainties
,”
Proceedings of the IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, IEEE, pp.
65
70
.
35.
Liu
,
X.-J.
,
Gong
,
Z.
,
Xie
,
F.
, and
Shentu
,
S.
,
2018
, “
Kinematics Analysis and Motion Control of a Mobile Robot Driven by Three Tracked Vehicles
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Quebec, Canada
,
Aug. 26–29
, Paper No. V05AT07A068.
36.
Gan
,
D.
,
Fu
,
J.
,
Lin
,
H.
,
Yang
,
H.
,
Rastgaar
,
M.
,
Min
,
B.-C.
, and
Voyles
,
R.
,
2022
, “
Actuation-Coordinated Mobile Parallel Robots With Hybrid Mobile and Manipulation Functions
,”
ASME J. Mech. Rob.
,
14
(
4
), p.
041005
.
37.
Angeles
,
J.
,
2005
, “
The Degree of Freedom of Parallel Robots: A Group-Theoretic Approach
,”
Proceedings of the 2005 IEEE International Conference on Robotics and Automation
,
Barcelona, Spain
,
Apr. 18–22
, IEEE, pp.
1005
1012
.
38.
Heidari
,
F.
, and
Fotouhi
,
R.
,
2015
, “
A Human-Inspired Method for Point-to-Point and Path-Following Navigation of Mobile Robots
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041025
.
39.
Guan
,
W.
,
Chen
,
S.
,
Wen
,
S.
,
Tan
,
Z.
,
Song
,
H.
, and
Hou
,
W.
,
2020
, “
High-Accuracy Robot Indoor Localization Scheme Based on Robot Operating System Using Visible Light Positioning
,”
IEEE Photon. J.
,
12
(
2
), pp.
1
16
.
40.
Gorostiza
,
E. M.
,
Galilea
,
J. L. L.
,
Meca
,
F. J. M.
,
Monzú
,
D. S.
,
Zapata
,
F. E.
, and
Puerto
,
L. P.
,
2011
, “
Infrared Sensor System for Mobile-Robot Positioning in Intelligent Spaces
,”
Sensors
,
11
(
5
), pp.
5416
5438
.
41.
Moreira
,
A. P.
,
Costa
,
P.
, and
Lima
,
J.
,
2020
, “
New Approach for Beacons Based Mobile Robot Localization Using Kalman Filters
,”
Procedia Manuf.
,
51
, pp.
512
519
.
42.
Gao
,
M.
,
Yu
,
M.
,
Guo
,
H.
, and
Xu
,
Y.
,
2019
, “
Mobile Robot Indoor Positioning Based on a Combination of Visual and Inertial Sensors
,”
Sensors
,
19
(
8
), p.
1773
.
43.
Xu
,
X.
,
Pang
,
F.
,
Ran
,
Y.
,
Bai
,
Y.
,
Zhang
,
L.
,
Tan
,
Z.
,
Wei
,
C.
, and
Luo
,
M.
,
2021
, “
An Indoor Mobile Robot Positioning Algorithm Based on Adaptive Federated Kalman Filter
,”
IEEE Sens. J.
,
21
(
20
), pp.
23098
23107
.
44.
Benjumea
,
E.
,
Sierra
,
J. S.
,
Meza
,
J.
, and
Marrugo
,
A. G.
,
2021
, “
Multi-target Attachment for Surgical Instrument Tracking
,”
Mexican Conference on Pattern Recognition
,
Mexico City, Mexico
,
June 23–26
, Springer, pp.
345
354
.
45.
Marut
,
A.
,
Wojtowicz
,
K.
, and
Falkowski
,
K.
,
2019
, “
Aruco Markers Pose Estimation in UAV Landing Aid System
,”
2019 IEEE 5th International Workshop on Metrology for AeroSpace (MetroAeroSpace)
,
Turin, Italy
,
June 19–21
, IEEE, pp.
261
266
.
You do not currently have access to this content.