Abstract

This paper discusses the theoretical analysis and the experimental validation of the step and stair climbing capability of wheel-track-leg hybrid locomotion (WheTLHLoc), a small-scale hybrid locomotion robot with overall size of 450 × 350 × 130 mm and maximum payload of 0.5 kg. The architecture of this robot combines two tracks, two rotating legs, two actuated wheels, and two passive omni wheels. The robot is capable of performing different locomotion modes: wheeled locomotion on flat and compact grounds with maximum speed of 0.9 m/s, tracked locomotion on soft and yielding terrains with maximum speed of 0.1 m/s, mixed use of tracks, legs, and wheels to overcome obstacles. In particular, the process of step and stair climbing is analyzed considering static stability and non-slipping conditions. The experimental campaign on the first prototype has confirmed the effectiveness of the proposed climbing maneuver for steps up to 165 mm and the operative flexibility of the WheTLHLoc robot.

References

1.
IFR International Federation of Robotics
,
World Robotics 2021, Industrial Robots and Service Robots
. https://www.ifr.org. Accessed April 11, 2022.
2.
Mattson
,
P. J.
, and
Marshall
,
J. L.
,
2019
,
Homeland Security and Public Safety: Research, Applications and Standards
,
ASTM International
,
West Conshohocken, PA
.
3.
Chun
,
W. H.
, and
Papanikolopoulos
,
N.
,
2016
, “Robot Surveillance and Security,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Berlin/Heidelberg, Germany
, pp.
1605
1626
.
4.
Nagatani
,
K.
,
Kiribayashi
,
S.
,
Okada
,
Y.
,
Otake
,
K.
,
Yoshida
,
K.
,
Tadokoro
,
S.
,
Takeshi
,
N.
, et al
,
2013
, “
Emergency Response to the Nuclear Accident at the Fukushima Daiichi Nuclear Power Plants Using Mobile Rescue Robots
,”
J. Field Robot.
,
30
(
1
), pp.
44
63
.
5.
Mateo Sanguino
,
T. J.
,
2017
, “
50 Years of Rovers for Planetary Exploration: A Retrospective Review for Future Directions
,”
Rob. Auton. Syst.
,
94
, pp.
172
185
.
6.
Bruzzone
,
L.
, and
Quaglia
,
G.
,
2012
, “
Review Article: Locomotion Systems for Ground Mobile Robots in Unstructured Environments
,”
Mech. Sci.
,
3
(
2
), pp.
49
62
.
7.
Manchester
,
I. R.
,
Mettin
,
U.
,
Iida
,
F.
, and
Tedrake
,
R.
,
2011
, “
Stable Dynamic Walking Over Uneven Terrain
,”
Int. J. Robot. Res.
,
30
(
3
), pp.
265
279
.
8.
Boston Dynamics
, https://www.bostondynamics.com, Accessed April 11, 2022.
9.
Chung
,
W.
, and
Iagnemma
,
K.
,
2016
, “Wheeled Robots,”
Springer Handbook of Robotics
,
B.
Siciliano
, and
O.
Khatib
, eds.,
Springer
,
Berlin/Heidelberg, Germany
, pp.
575
594
.
10.
SuperDroid Robots
,
Robots That Solve Business Challenges
, https://www.superdroidrobots.com, Accessed September 12, 2022.
11.
Wong
,
J. Y.
,
2001
,
Theory of Ground Vehicles
, 3rd ed.,
John Wiley
,
New York
.
12.
Bruzzone
,
L.
,
Nodehi
,
S. E.
, and
Fanghella
,
P.
,
2022
, “
Tracked Locomotion Systems for Ground Mobile Robots: A Review
,”
Machines
,
10
(
8
).
13.
Surveillance Security Robots Robotic Platform
, https://www.inspectorbots.com/Home.html, Accessed September 12, 2022.
14.
Bjelonic
,
M.
,
Grandia
,
R.
,
Harley
,
O.
,
Galliard
,
C.
,
Zimmermann
,
S.
, and
Hutter
,
M.
,
2021
, “
Whole-Body MPC and Online Gait Sequence Generation for Wheeled-Legged Robots
,”
Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1,
pp.
8388
8395
.
15.
Altendorfer
,
R.
,
Moore
,
N.
,
Komsuoglu
,
H.
,
Buehler
,
M.
,
Brown
,
H. B.
, Jr.
,
McMordie
,
D.
,
Saranli
,
U.
,
Full
,
R.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Biologically Inspired Hexapod Runner
,”
Auton. Robots
,
11
(
3
), pp.
207
213
.
16.
Bruzzone
,
L.
, and
Fanghella
,
P.
,
2014
, “
Mantis Hybrid Leg-Wheel Robot: Stability Analysis and Motion Law Synthesis for Step Climbing
,”
Proceedings of the 10th IEEE/ASME International Conference on Mechatronic and Embedded Systems and Applications MESA 2014
,
Senigallia, Italy
,
Sept. 10–12
, pp.
1
6
.
17.
Siegwart
,
R.
,
Lauria
,
M.
,
Maeusli
,
P. A.
, and
Van Winnendael
,
M.
,
1998
, “
Design and Implementation of an Innovative Micro Rover
,”
Proceedings of Robotics 98, the 3rd Conference and Exposition on Robotics in Challenging Environments
,
Albuquerque, NM
,
Apr. 26–30
.
18.
Quaglia
,
G.
,
Butera
,
L. G.
,
Chiapello
,
E.
, and
Bruzzone
,
L.
,
2014
, “
UGV Epi.q-Mod
,”
Mech. Mach. Sci.
,
22
, pp.
331
339
.
19.
Carbonari
,
L.
,
Botta
,
A.
,
Cavallone
,
P.
,
Tagliavini
,
L.
, and
Quaglia
,
G.
,
2021
, “
Data-Driven Analysis of Locomotion for a Class of Articulated Mobile Robots
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
050905
.
20.
Hirose
,
S.
,
Shirasu
,
T.
, and
Fukushima
,
E. F.
,
1996
, “
Proposal for Cooperative Robot “Gunryu” Composed of Autonomous Segments
,”
Rob. Auton. Syst.
,
17
(
1–2
), pp.
107
118
.
21.
Kim
,
J.
,
Kim
,
J.
, and
Lee
,
D.
,
2018
, “
Mobile Robot With Passively Articulated Driving Tracks for High Terrainability and Maneuverability on Unstructured Rough Terrain: Design, Analysis, and Performance Evaluation
,”
J. Mech. Sci. Technol.
,
32
(
11
), pp.
5389
5400
.
22.
Lee
,
G.
,
Kim
,
H.
,
Seo
,
K.
,
Kim
,
J.
,
Sitti
,
M.
, and
Seo
,
T. W.
,
2016
, “
Series of Multilinked Caterpillar Track-Type Climbing Robots
,”
J. Field Rob.
,
33
(
6
), pp.
737
750
.
23.
Han
,
X.
,
Lin
,
M.
,
Wu
,
X.
, and
Yang
,
J.
,
2019
, “
Design of an Articulated-Tracked Mobile Robot With Two Swing Arms
,”
Proceedings of the 2019 IEEE 4th International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Toyonaka, Japan
,
July 3–5
, pp.
684
689
.
24.
Wheel-Tracked Combined Robot Adaptable to Complicated Unstructured Environments Such as Nuclear Power Plant
, Patent No. CN203806022U.
25.
Self-Climbing Control Method of Tracked Mobile Robot With Double-Rod Arm
, Patent No. CN104875800A.
26.
Fujita
,
T.
, and
Sasaki
,
T.
,
2018
, “
Development of Hexapod Tracked Mobile Robot and Its Hybrid Locomotion With Object-Carrying
,”
Proceedings of the 5th IEEE International Symposium on Robotics and Intelligent Sensors IRIS 2017
,
Ottawa, Canada
,
Oct. 5–7
, pp.
69
73
.
27.
Babu
,
N.
,
Sujatha
,
S.
,
Narayanan
,
S.
, and
Balamurugan
,
V.
,
2018
, “
Novel Hybrid Leg-Track Locomotion Robot and Its Stability Analysis Using a Unified Methodology
,”
Procedia Comput. Sci.
,
133
, pp.
486
493
.
28.
Rea
,
P.
, and
Ottaviano
,
E.
,
2018
, “
Design and Development of an Inspection Robotic System for Indoor Applications
,”
Robot. Comput. Integr. Manuf.
,
49
, pp.
143
151
.
29.
Hirose
,
S.
,
Fukuda
,
Y.
,
Yoneda
,
K.
,
Nagakubo
,
A.
,
Tsukagoshi
,
H.
,
Arikawa
,
K.
,
Endo
,
G.
,
Doi
,
T.
, and
Hodoshima
,
R.
,
2009
, “
Quadruped Walking Robots at Tokyo Institute of Technology
,”
IEEE Robot. Autom. Mag.
,
16
(
2
), pp.
104
114
.
30.
Han
,
C.
,
Xu
,
Y.
,
Xu
,
X.
,
Zeng
,
Z.
,
Lu
,
H.
, and
Zhou
,
Z.
,
2018
, “
Remote Control and Autonomous Driving: The System-Wide Design of a Wheel-Track Transformable Robot—Kylin Blaster
,”
Proceedings of the 2018 Chinese Automation Congress (CAC)
,
Xi'an, China
,
Nov. 23–25
, pp.
3446
3451
.
31.
Hybrid Robotic Vehicle
. Patent No. US4977971A.
32.
Mobile Robot
. Patent No. US8360178B2.
33.
Ben-Tzvi
,
P.
, and
Saab
,
W.
,
2019
, “
A Hybrid Tracked-Wheeled Multi-Directional Mobile Robot
,”
ASME J. Mech. Rob.
,
11
(
4
), p.
041008
.
34.
Sohal
,
S. S.
,
Sebastian
,
B.
, and
Ben-Tzvi
,
P.
,
2022
, “
Autonomous Docking of Hybrid-Wheeled Modular Robots With an Integrated Active Genderless Docking Mechanism
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011010
.
35.
Mobile Robot With Hybrid Traction and Mobility Mechanism
. Patent No. US9004200B2.
36.
Kim
,
J.
,
Kim
,
Y. G.
,
Kwak
,
J. H.
,
Hong
,
D. H.
, and
An
,
J.
,
2010
, “
Wheel & Track Hybrid Robot Platform for Optimal Navigation in an Urban Environment
,”
Proceedings of the SICE Annual Conference
,
Taipei, Taiwan
,
Aug. 18–21
, pp.
881
884
.
37.
Michaud
,
F.
,
Letourneau
,
D.
,
Arsenault
,
M.
,
Bergeron
,
Y.
,
Cadrin
,
R.
,
Gagnon
,
F.
,
Legault
,
M. A.
, et al
,
2005
, “
Multi-Modal Locomotion Robotic Platform Using Leg-Track-Wheel Articulations
,”
Auton. Robots
,
18
(
2
), pp.
137
156
.
38.
Hirose
,
S.
,
Fukushima
,
E.
,
Damoto
,
R.
, and
Nakamoto
,
H.
,
2001
, “
Design of Terrain Adaptive Versatile Crawler Vehicle HELIOS-VI
,”
Proceedings of the IEEE International Conference on Intelligent Robots and Systems
,
Maui, HI
,
Oct. 29–Nov. 3
, pp.
1540
1545
.
39.
Luo
,
Z.
,
Shang
,
J.
,
Wei
,
G.
, and
Ren
,
L.
,
2018
, “
A Reconfigurable Hybrid Wheel-Track Mobile Robot Based on Watt II Six-Bar Linkage
,”
Mech. Mach. Theory
,
128
, pp.
16
32
.
40.
Gao
,
X.
,
Cui
,
D.
,
Guo
,
W.
,
Mu
,
Y.
, and
Li
,
B.
,
2017
, “
Dynamics and Stability Analysis on Stairs Climbing of Wheel-Track Mobile Robot
,”
Int. J. Adv. Robot. Syst.
,
14
(
4
), pp.
1
13
.
41.
Zhou
,
F.
,
Xu
,
X.
,
Xu
,
H.
, and
Zhang
,
X.
,
2018
, “
A Multimodal Hybrid Robot With Transformable Wheels
,”
Proceedings of the 2017 IEEE International Conference on Real-Time Computing and Robotics RCAR 2017
,
Okinawa, Japan
,
July 14–18
, pp.
139
144
.
42.
Quaglia
,
G.
,
Franco
,
W.
, and
Oderio
,
R.
,
2011
, “
Wheelchair.q, A Motorized Wheelchair With Stair Climbing Ability
,”
Mech. Mach. Theory
,
46
(
11
), pp.
1601
1609
.
43.
Scewo Bro
,
Power Wheelchair, The New Generation
, https://www.scewo.com/, Accessed September 1, 2022.
44.
Modular Robotic Service Vehicle
. Patent No. US20210283783A1.
45.
Bruzzone
,
L.
,
Baggetta
,
M.
,
Nodehi
,
S. E.
,
Bilancia
,
P.
, and
Fanghella
,
P.
,
2021
, “
Functional Design of a Hybrid Leg-Wheel-Track Ground Mobile Robot
,”
Machines
,
9
(
1
), pp.
1
11
.
46.
Robot for Stairs Climbing
. Patent No. KR101304107B1.
47.
Song
,
Z.
,
Luo
,
Z.
,
Wei
,
G.
, and
Shang
,
J.
,
2022
, “
A Portable Six-Wheeled Mobile Robot With Reconfigurable Body and Self-Adaptable Obstacle-Climbing Mechanisms
,”
ASME J Mech Robot
,
14
(
5
), p.
051010
.
48.
Baishya
,
N. J.
,
Bhattacharya
,
B.
,
Ogai
,
H.
, and
Tatsumi
,
K.
,
2021
, “
Analysis and Design of a Minimalist Step Climbing Robot
,”
Appl. Sci.
,
11
(
15
), p.
7044
.
49.
Kim
,
Y.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T.
,
2019
, “
Curved-Spoke Tri-Wheel Mechanism for Fast Stair-Climbing
,”
IEEE Access
,
7
, pp.
173766
173773
.
50.
Zhu
,
Y.
,
Fei
,
Y.
, and
Xu
,
H.
,
2018
, “
Stability Analysis of a Wheel-Track-Leg Hybrid Mobile Robot
,”
J. Intell. Robot. Syst.
,
91
(
3–4
), pp.
515
528
.
51.
Tracker, Video Analysis and Modeling Tool
, https://physlets.org/tracker, Accessed September 12, 2022.
52.
Vincent
,
I.
, and
Sun
,
Q.
,
2012
, “
A Combined Reactive and Reinforcement Learning Controller for an Autonomous Tracked Vehicle
,”
Rob. Auton. Syst.
,
60
(
4
), pp.
599
608
.
You do not currently have access to this content.