Abstract

One drawback of wheeled robots is their inferiority to conquer large obstacles and perform well on complicated terrains, which limits their application in rescue missions. To provide a solution to this issue, an ant-like six-wheeled reconfigurable robot, called AntiBot, is proposed in this paper. The AntiBot has a Sarrus reconfiguration body, a three-rocker-leg passive suspension, and mechanical adaptable obstacle-climbing wheeled legs. In this paper, we demonstrate through simulations and experiments that this robot can change the position of its center of mass actively to improve its obstacle-crossing capability. The geometric and static stability conditions for obstacle crossing of the robot are derived and formulated, and numerical simulations are conducted to find the feasible region of the robot’s configuration in obstacle crossing. In addition, a self-adaptive obstacle-crossing algorithm is proposed to improve the robot’s obstacle-crossing performance. A physical prototype is developed, and using it, a series of experiments are carried out to verify the effectiveness of the proposed self-adaptive obstacle-crossing algorithm.

References

1.
Tadokoro
,
S.
,
Takamori
,
T.
,
Tsurutani
,
S.
, and
Osuka
,
K.
,
1997
, “
On Robotic Rescue Facilities for Disastrous Earthquakes From the Great Hanshin-Awaji (Kobe) Earthquake
,”
J Rob. Mechatron.
,
9
(
1
), pp.
46
56
.
2.
Casper
,
J.
, and
Murphy
,
R. R.
,
2003
, “
Human-Robot Interactions During the Robot-Assisted Urban Search and Rescue Response at the World Trade Center
,”
IEEE Trans. Syst. Man Cybern. Part B Cybern.
,
33
(
3
), pp.
367
385
.
3.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2000
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
.
4.
Lindemann
,
R. A.
, and
Voorhees
,
C. J.
,
2005
, “
Mars Exploration Rover Mobility Assembly Design, Test and Performance
,”
Proceedings of the IEEE International Conference on Systems Man and Cybernetics
,
Waikoloa, HI
,
Oct. 12
, Vol. 1(1), pp.
450
455
.
5.
Estier
,
T.
,
Crausaz
,
Y.
,
Merminod
,
B.
,
Lauria
,
M.
,
Piguet
,
R.
, and
Siegwart
,
R.
,
2000
, “
An Innovative Space Rover With Extended Climbing Abilities
,”
Robotics
,
2000
(
1
), pp.
333
339
.
6.
Michaud
,
S.
,
Schneider
,
A.
,
Bertrand
,
R.
,
Lamon
,
P.
,
Siegwart
,
R.
,
Van Winnendael
,
M.
, and
Schiele
,
A.
,
2002
, “
SOLERO: Solar Powered Exploration Rover
,”
Proceedings of the Symposium on Advanced Space Technologies for Robotics and Automation (ASTRA)
,
Noordwijk, The Netherlands
,
Nov. 19–21
, pp.
1
8
.
7.
Zhang
,
Y.
,
Xiao
,
J.
,
Zhang
,
X.
,
Liu
,
D.
, and
Zou
,
H.
,
2014
, “
Design and Implementation of Chang'E-3 Rover Location System
,”
Sci. Sin. Technol.
,
44
(
5
), pp.
483
491
.
8.
Heimfarth
,
T.
,
Araujo
,
J. P. D.
, and
Giacomin
,
J. C.
,
2014
, “
Unmanned Aerial Vehicle as Data Mule for Connecting Disjoint Segments of Wireless Sensor Network With Unbalanced Traffic
,”
Proceedings of the 2014 IEEE 17th International Symposium on Object/Component/Service-Oriented Real-Time Distributed Computing
,
Reno, NV
,
June 10–12
, pp.
246
252
.
9.
Fish
,
S.
, and
Sitzman
,
A.
,
2009
, “
Unmanned Vehicles for Mobile Electromagnetic Launch Platforms
,”
IEEE Trans. Magn.
,
45
(
1
), pp.
639
640
.
10.
Iagnemma
,
K.
,
Rzepniewski
,
A.
,
Dubowsky
,
S.
,
Pirjanian
,
P.
,
Huntsberger
,
T.
, and
Schenker
,
P.
,
2000
, “
Mobile Robot Kinematic Reconfigurability for Rough Terrain
,”
Proceedings of the Sensor Fusion and Decentralized Control in Robotic Systems III
,
Boston, MA
,
Oct. 16
, pp.
413
420
.
11.
Kozma
,
R.
,
Huntsberger
,
T.
,
Aghazarian
,
H.
, and
Freeman
,
W. J.
,
2007
, “
Implementing Intentional Robotics Principles Using SSR2K Platform
,”
Proceedings of the 2007 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
San Diego, CA
,
Oct. 29–Nov. 2
, pp.
2262
2267
.
12.
Zhang
,
T.
,
Wang
,
T.
,
Wu
,
Y.
, and
Zhao
,
Q.
,
2013
, “
Design and Realization of an All-Terrain Unmanned Ground Vehicle
,”
Robot
,
35
(
6
), pp.
657
664
.
13.
Jiang
,
H.
,
Xu
,
G.
,
Zeng
,
W.
, and
Gao
,
F.
,
2019
, “
Design and Kinematic Modeling of a Passively-Actively Transformable Mobile Robot
,”
Mech. Mach. Theory
,
142
(
2
), p.
103591
.
14.
Lauria
,
M.
,
Piguet
,
Y.
, and
Siegwart
,
R.
,
2002
, “
Octopus—An Autonomous Wheeled Climbing Robot
,”
Proceedings of the Fifth International Conference on Climbing and Walking Robots (CLAWAR)
,
London, UK
,
Sept. 25–27
, pp.
315
322
.
15.
Wilcox
,
B. H.
,
2011
, “
ATHLETE: A Cargo-Handling Vehicle for Solar System Exploration
,”
Proceedings of the 2011 Aerospace Conference
,
Big Sky, MT
, pp.
1
8
.
16.
Sunspiral
,
V.
,
Wheeler
,
D. W.
,
Chavez-Clemente
,
D.
, and
Mittman
,
D.
,
2012
, “
Development and Field Testing of the FootFall Planning System for the ATHLETE Robots
,”
J. Field Rob.
,
29
(
3
), pp.
483
505
.
17.
Grand
,
C.
,
Benamar
,
F.
, and
Plumet
,
F.
,
2010
, “
Motion Kinematics Analysis of Wheeled-Legged Rover Over 3D Surface With Posture Adaptation
,”
Mech. Mach. Theory
,
45
(
3
), pp.
477
495
.
18.
Ning
,
M.
,
Ma
,
Z.
,
Chen
,
H.
,
Cao
,
J.
,
Zhu
,
C.
,
Liu
,
Y.
, and
Wang
,
Y.
,
2018
, “
Design and Analysis for a Multifunctional Rescue Robot With Four-Bar Wheel-Legged Structure
,”
Adv. Mech. Eng.
,
10
(
2
), pp.
1
14
.
19.
Herbert
,
S. D.
,
Drenner
,
A.
, and
Papanikolopoulos
,
N.
,
2008
, “
Loper: A Quadruped-Hybrid Stair Climbing Robot
,”
Proceedings of the 2008 IEEE International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
799
804
.
20.
Altendorfer
,
R.
,
Moore
,
N.
,
Komsuoglu
,
H.
,
Buehler
,
M.
,
Brown
,
H. B.
, Jr.
,
McMordie
,
D.
,
Saranli
,
U.
,
Full
,
R.
, and
Koditschek
,
D. E.
,
2001
, “
RHex: A Biologically Inspired Hexapod Runner
,”
Auton. Rob.
,
11
(
3
), pp.
207
213
.
21.
Eich
,
M.
,
Grimminger
,
F.
, and
Kirchner
,
F.
,
2009
, “
Adaptive Compliance Control of a Multi-Legged Stair-Climbing Robot Based on Proprioceptive Data
,”
Ind. Rob.
,
36
(
4
), pp.
331
339
.
22.
Mertyüz
,
R.
,
Tanyldz
,
A. K.
,
Taar
,
B.
,
Tatar
,
A. B.
, and
Yakut
,
O.
,
2020
, “
FUHAR: A Transformable Wheel-Legged Hybrid Mobile Robot
,”
Rob. Auton. Syst.
,
133
(
2
), p.
103627
.
23.
Chen
,
W. H.
,
Lin
,
H. S.
,
Lin
,
Y. M.
, and
Lin
,
P. C.
,
2017
, “
TurboQuad: A Novel Leg–Wheel Transformable Robot With Smooth and Fast Behavioral Transitions
,”
IEEE Trans. Rob.
,
33
(
5
), pp.
1025
1040
.
24.
Zheng
,
C.
, and
Lee
,
K.
,
2019
, “
WheeLeR: Wheel-Leg Reconfigurable Mechanism With Passive Gears for Mobile Robot Applications
,”
Proceedings of the 2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC
,
May 20–24
, pp.
9292
9298
.
25.
Kim
,
Y.
,
Lee
,
Y.
,
Lee
,
S.
,
Kim
,
J.
,
Kim
,
H. S.
, and
Seo
,
T. W.
,
2020
, “
STEP: A New Mobile Platform With 2-DOF Transformable Wheels for Service Robots
,”
IEEE/ASME Trans. Mechatron.
,
25
(
4
), pp.
1859
1868
.
26.
Quaglia
,
G.
, and
Nisi
,
M.
,
2015
, “
Design and Construction of a New Version of the Epi.q UGV for Monitoring and Surveillance Tasks
,”
Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition
,
Houston, TX
,
Nov. 13–19
,
Paper No. IMECE2015-50163
.
27.
Quaglia
,
G.
,
Oderio
,
R.
,
Bruzzone
,
L.
, and
Razzoli
,
R. P.
,
2011
, “
Epi.q Mobile Robots Family
,”
Proceedings of the ASME International Mechanical Engineering Congress & Exposition
,
Denver, CO
,
Nov. 11–17
.
28.
Chen
,
G.
,
Zhang
,
S.
, and
Li
,
G.
,
2013
, “
Multistable Behaviors of Compliant Sarrus Mechanisms
,”
ASME J. Mech. Rob.
,
5
(
2
), p.
021005
.
29.
Song
,
Z.
,
Luo
,
Z.
,
Wei
,
G.
, and
Shang
,
J.
,
2021
, “
Design and Analysis of a Six-Wheeled Companion Robot With Mechanical Obstacle-Overcoming Adaptivity
,”
Mech. Sci.
,
12
(
2
), pp.
1115
1136
.
30.
Quaglia
,
G.
,
Bruzzone
,
L.
,
Bozzini
,
G.
,
Oderio
,
R.
, and
Razzoli
,
R. P.
,
2011
, “
Epi.q-TG: Mobile Robot for Surveillance
,”
Ind. Rob.
,
38
(
3
), pp.
282
291
.
31.
Kim
,
K.
,
Kim
,
Y.
,
Kim
,
J.
,
Kim
,
H.
, and
Seo
,
T.
,
2020
, “
Optimal Trajectory Planning for 2-DOF Adaptive Transformable Wheel
,”
IEEE Access
,
8
, pp.
14452
14459
.
32.
Chen
,
S. C.
,
Huang
,
K. J.
,
Chen
,
W. H.
,
Shen
,
S. Y.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2014
, “
Quattroped: A Leg-Wheel Transformable Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
2
), pp.
730
742
.
33.
Chen
,
S. C.
,
Huang
,
K. J.
,
Li
,
C. H.
, and
Lin
,
P. C.
,
2011
, “
Trajectory Planning for Stair Climbing in the Leg-Wheel Hybrid Mobile Robot Quattroped
,”
Proceedings of the 2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
1229
1234
.
34.
Choi
,
D.
,
Kim
,
Y.
,
Jung
,
S.
,
Kim
,
J.
, and
Kim
,
H.
,
2016
, “
A New Mobile Platform (RHyMo) for Smooth Movement on Rugged Terrain
,”
IEEE/ASME Trans. Mechatron.
,
21
(
3
), pp.
1303
1314
.
35.
Choi
,
D.
,
Kim
,
Y.
,
Jung
,
S.
,
Kim
,
H.
, and
Kim
,
J.
,
2017
, “
Improvement of Step-Climbing Capability of a New Mobile Robot RHyMo via Kineto-Static Analysis
,”
Mech. Mach. Theory
,
114
, pp.
20
37
.
36.
Jung
,
S.
,
Choi
,
D.
,
Kim
,
H.
, and
Kim
,
J.
,
2016
, “
Trajectory Generation Algorithm for Smooth Movement of a Hybrid-Type Robot Rocker-Pillar
,”
J. Mech. Sci. Technol.
,
30
(
11
), pp.
5217
5224
.
37.
Garcia
,
E.
,
Estremera
,
J.
, and
de Santos
,
P. G.
,
2002
, “
A Comparative Study of Stability Margins for Walking Machines
,”
Robotica
,
20
(
6
), pp.
595
606
.
38.
Liu
,
C.
,
2018
, “
Research on Obstacle-Performance of Articulated-Track Inspection Robot Under Complex Environment
,”
Master of Engineering
,
University of South China
,
Hengyang, China
.
You do not currently have access to this content.