Abstract

Collaborative robots must simultaneously be safe enough to operate in close proximity to human operators and powerful enough to assist users in industrial tasks such as lifting heavy equipment. The requirement for safety necessitates that collaborative robots are designed with low-powered actuators. However, some industrial tasks may require the robot to have high payload capacity and/or long reach. For collaborative robot designs to be successful, they must find ways of addressing these conflicting design requirements. One promising strategy for navigating this tradeoff is through the use of static balancing mechanisms to offset the robot’s self-weight, thus enabling the selection of low-powered actuators. In this paper, we introduce a novel, two degrees-of-freedom static balancing mechanism based on spring-loaded, wire-wrapped cams. We also present an optimization-based cam design method that guarantees the cams stay convex, ensures the springs stay below their extensions limits, and minimizes sensitivity to unmodeled deviations from the nominal spring constant. Additionally, we present a model of the effect of friction between the wire and the cam. Lastly, we show experimentally that the torque generated by the cam mechanism matches the torque predicted in our modeling approach. Our results also suggest that the effects of wire-cam friction are significant for non-circular cams.

References

1.
U.S. Bureau of Labor Statistics
,
2016
,
Nonfatal Occupational Injuries and Illnesses Requiring Days Away From Work, 2015
. [online.] Available https://www.bls.gov/news.release/pdf/osh2.pdf.
2.
Hales
,
T.
, and
Bernard
,
B.
,
1996
, “
Epidemiology of Work-Related Musculoskeletal Disorders
,”
Orthop. Clin. N. Am.
,
27
(
4
), pp.
679
709
.
3.
Vermeulen
,
M.
, and
Wisse
,
M.
,
2010
, “
Intrinsically Safe Robot Arm: Adjustable Static Balancing and Low Power Actuation
,”
Int. J. Soc. Rob.
,
2
(
3
), pp.
275
288
.
4.
Laliberte
,
T.
,
Gosselin
,
C.
, and
Jean
,
M.
,
1999
, “
Static Balancing of 3-DOF Planar Parallel Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
4
(
4
), pp.
363
377
.
5.
Whitney
,
J. P.
, and
Hodgins
,
J. K.
,
2014
, “
A Passively Safe and Gravity-Counterbalanced Anthropomorphic Robot Arm
,”
Proc. IEEE Int. Conf. Rob. Autom.
,
6168
(
3
), pp.
6168
6173
.
6.
Petrescu
,
R. V.
,
Aversa
,
R.
,
Apicella
,
A.
, and
Petrescu
,
F. I. T.
,
2018
, “
Total Static Balancing and Kinetostatics of the 3R Base Cinematic Chain
,”
J. Mechatron. Rob.
,
2
(
1
), pp.
1
13
.
7.
Woo
,
J.
,
Seo
,
J.-T.
, and
Yi
,
B.-J.
,
2019
, “
A Static Balancing Method for Variable Payloads by Combination of a Counterweight and Spring and Its Application as a Surgical Platform
,”
Appl. Sci.
,
9
(
19
), p.
3955
.
8.
Gopalswamy
,
A.
,
Gupta
,
P.
, and
Vidyasagar
,
M.
,
1992
, “
A New Parallelogram Linkage Configuration for Gravity Compensation Using Torsional Springs
,”
Proceedings of 1992 IEEE International Conference on Robotics and Automation
,
Nice, France
,
May 12–14
, Vol.
1
,
IEEE Computer Society Press
, pp.
664
669
.
9.
Agrawal
,
A.
, and
Agrawal
,
S. K.
,
2005
, “
Design of Gravity Balancing Leg Orthosis Using Non-Zero Free Length Springs
,”
Mech. Mach. Theory
,
40
(
6
), pp.
693
709
.
10.
Barents
,
R.
,
Schenk
,
M.
,
van Dorsser
,
W. D.
,
Wisse
,
B. M.
, and
Herder
,
J. L.
,
2011
, “
Spring-to-Spring Balancing as Energy-Free Adjustment Method in Gravity Equilibrators
,”
ASME J. Mech. Des.
,
133
(
6
), p.
061010
.
11.
Kim
,
H.-S.
, and
Song
,
J.-B.
,
2013
, “
Low-Cost Robot Arm With 3-DOF Counterbalance Mechanism
,”
2013 IEEE International Conference on Robotics and Automation
,
Karlsruhe, Germany
,
May 6–10
,
IEEE
, pp.
4183
4188
.
12.
Ahn
,
K. H.
,
Lee
,
W. B.
, and
Song
,
J. B.
,
2016
, “
Reduction in Gravitational Torques of an Industrial Robot Equipped With 2 DOF Passive Counterbalance Mechanisms
,”
IEEE International Conference on Intelligent Robots and Systems
,
Daejeon, South Korea
,
Oct. 9–14
, pp.
4344
4349
.
13.
Chu
,
Y. L.
, and
Kuo
,
C. H.
,
2016
, “
A Single-DOF Self-Regulated Gravity Balancer for Adjustable Payload
,”
Proceedings of the ASME Design Engineering Technical Conference
,
Charlotte, NC
,
Aug. 21–24
,
5A-2016
.
14.
Takahashi
,
T.
,
Zehnder
,
J.
,
Okuno
,
H. G.
,
Sugano
,
S.
,
Coros
,
S.
, and
Thomaszewski
,
B.
,
2019
, “
Computational Design of Statically Balanced Planar Spring Mechanisms
,”
IEEE Rob. Autom. Lett.
,
4
(
4
), pp.
4438
4444
.
15.
Simionescu
,
I.
,
2000
, “
The Static Balancing of the Industrial Robot Arms Part II: Continuous Balancing
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1299
1311
.
16.
Wu
,
C. J.
, and
Angeles
,
J.
,
2001
, “
Optimum Synthesis of an Elastic Torque-Compensating Cam Mechanism
,”
Mech. Mach. Theory
,
36
(
2
), pp.
245
259
.
17.
Koser
,
K.
,
2009
, “
A Cam Mechanism for Gravity-Balancing
,”
Mech. Res. Commun.
,
36
(
4
), pp.
523
530
.
18.
Lee
,
G.
,
Lee
,
D.
, and
Oh
,
Y.
,
2018
, “
One-Piece Gravity Compensation Mechanism Using Cam Mechanism and Compression Spring
,”
Int. J. Precis. Eng. Manuf. Green Technol.
,
5
(
3
), pp.
415
420
.
19.
Buśkiewicz
,
J.
,
2019
, “Balancing of a Wire Rope Hoist Using a Cam Mechanism,”
Advances in Manufacturing II
,
B.
Gapiński
,
M.
Szostak
, and
V.
Ivanov
, eds.,
Springer International Publishing
,
Poznan, Poland
, pp.
25
35
.
20.
Harrington
,
R.
,
1951
, “
Generation of Functions by Windup Mechanisms
,”
Rev. Sci. Instrum.
,
22
(
9
), pp.
701
702
.
21.
Carlson
,
L. E.
, and
Childress
,
D.
,
1975
, “
The Lift Lock: A Device to Increase the Lifting Ability of Dual-Control Prostheses
,”
Bull. Prosthet. Res.
,
10
(
23
), pp.
158
168
.
22.
Tidwell
,
P. H.
,
Bandukwala
,
N.
,
Dhande
,
S. G.
,
Reinholtz
,
C. F.
, and
Webb
,
G.
,
1994
, “
Synthesis of Wrapping Cams
,”
ASME J. Mech. Des.
,
116
(
2
), pp.
634
638
.
23.
Kilic
,
M.
,
Yazicioglu
,
Y.
, and
Kurtulus
,
D. F.
,
2012
, “
Synthesis of a Torsional Spring Mechanism With Mechanically Adjustable Stiffness Using Wrapping Cams
,”
Mech. Mach. Theory
,
57
, pp.
27
39
.
24.
Schroeder
,
J. S.
, and
Perry
,
J. C.
,
2017
, “
Development of a Series Wrapping Cam Mechanism for Energy Transfer in Wearable Arm Support Applications
,”
IEEE International Conference on Rehabilitation Robotics
,
London, UK
,
July 17–20
, pp.
585
590
.
25.
Spagnuolo
,
G.
,
Malosio
,
M.
,
Dinon
,
T.
,
Molinari Tosatti
,
L.
, and
Legnani
,
G.
,
2017
, “
Analysis and Synthesis of Linwwc-vsa, a Variable Stiffness Actuator for Linear Motion
,”
Mech. Mach. Theory
,
110
, pp.
85
99
.
26.
Schroeder
,
J. S.
, and
Perry
,
J. C.
,
2018
, “
Development of a Series Wrapping Cam and Energy-Storing Spring System for Application in Wearable Robotic Arm Supports
,”
Technol. Innov.
,
20
(
1–2
), pp.
21
36
.
27.
Yigit
,
C. B.
,
Bayraktar
,
E.
, and
Boyraz
,
P.
,
2018
, “
Low-Cost Variable Stiffness Joint Design Using Translational Variable Radius Pulleys
,”
Mech. Mach. Theory
,
130
(
111
), pp.
203
219
.
28.
Fedorov
,
D.
, and
Birglen
,
L.
,
2018
, “
Differential Noncircular Pulleys for Cable Robots and Static Balancing
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061001
.
29.
Kim
,
D.-W.
,
Lee
,
W.-B.
, and
Song
,
J.-B.
,
2020
, “
Design of a Linear Gravity Compensator for a Prismatic Joint
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
,
Oct. 24, 2020–Jan. 24, 2021
, pp.
6440
6445
.
30.
Candan
,
S. C.
,
Karagöz
,
O. K.
,
Yazıcıoğlu
,
Y.
, and
Saranl
,
U.
,
2020
, “
Design of a Parallel Elastic Hopper With a Wrapping Cam Mechanism and Template Based Virtually Tunable Damping Control
,”
Proceedings of the ASME 2020 Dynamic Systems and Control Conference. Volume 1: Adaptive/Intelligent System Control
,
Virtual
,
Oct. 5–7
,
American Society of Mechanical Engineers
, p. V001T05A009.
31.
Qu
,
X.
,
Cao
,
D.
,
Qu
,
R.
,
Zhang
,
G.
, and
Zhang
,
S.
,
2022
, “
A Novel Design of Torsion Spring-Connected Non-Linear Stiffness Actuator Based on Cam Mechanism
,”
ASME J. Mech. Des.
,
144
(
8
), p.
083303
.
32.
Simionescu
,
I.
,
2000
, “
The Static Balancing of the Industrial Robot Arms Part I: Discrete Balancing
,”
Mech. Mach. Theory
,
35
(
9
), pp.
1287
1298
.
33.
Morita
,
T.
,
Kuribara
,
F.
,
Shiozawa
,
Y.
, and
Sugano
,
S.
,
2003
, “
A Novel Mechanism Design for Gravity Compensation in Three Dimensional Space
,”
Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003)
,
Kobe, Japan
,
July 20–24
,
IEEE
, Vol.
1
, pp.
163
168
.
34.
Lee
,
W.-B.
,
Lee
,
S.-D.
, and
Song
,
J.-B.
,
2017
, “
Design of a 6-DOF Collaborative Robot Arm With Counterbalance Mechanisms
,”
2017 IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
3696
3701
.
35.
Cho
,
C.
,
Lee
,
W.
, and
Kang
,
S.
,
2010
, “
Static Balancing of a Manipulator With Hemispherical Work Space
,”
2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics
,
Montreal, QC, Canada
,
July 6–9
,
IEEE
, pp.
1269
1274
.
36.
Cho
,
C.
,
Lee
,
W.
,
Lee
,
J.
, and
Kang
,
S.
,
2012
, “
A 2-DOF Gravity Compensator With Bevel Gears
,”
J. Mech. Sci. Technol.
,
26
(
9
), pp.
2913
2919
.
37.
Mahalingam
,
S.
, and
Sharan
,
A.
,
1986
, “
The Optimal Balancing of the Robotic Manipulators
,”
Proceedings of 1986 IEEE International Conference on Robotics and Automation
,
San Francisco, CA
,
Apr. 7–10
, Vol.
3
, pp.
828
835
.
38.
Lessard
,
S.
,
Bigras
,
P.
, and
Bonev
,
I. A.
,
2007
, “
A New Medical Parallel Robot and Its Static Balancing Optimization
,”
ASME J. Med. Devices
,
1
(
4
), pp.
272
278
.
39.
Demeulenaere
,
B.
, and
De Schutter
,
J.
,
2005
, “
Input Torque Balancing Using an Inverted Cam Mechanism
,”
ASME J. Mech. Des.
,
127
(
5
), pp.
887
900
.
40.
Saravanan
,
R.
,
Ramabalan
,
S.
, and
Dinesh Babu
,
P.
,
2008
, “
Optimum Static Balancing of an Industrial Robot Mechanism
,”
Eng. Appl. Artif. Intell.
,
21
(
6
), pp.
824
834
.
41.
Moré
,
J. J.
,
1978
, “The Levenberg-Marquardt Algorithm: Implementation and Theory,”
Numerical Analysis
,
G. A.
Watson
, ed.,
Springer
,
Berlin, Heidelberg
, pp.
105
116
.
42.
Antman
,
S. S.
,
2004
,
Nonlinear Problems of Elasticity
, 2nd ed.,
Springer
,
New York
.
43.
Meriam
,
J. L.
, and
Kraige
,
L. G.
,
2012
,
Engineering Mechanics: Statics
, 7th ed.,
John Wiley & Sons
,
Hoboken, NJ
.
44.
Angeles
,
J.
, and
López-Cajún
,
C. S.
,
2012
,
Optimization of Cam Mechanisms
, Vol.
9
,
Kluwer Academic Publishers
,
Dordrecht, The Netherlands
.
45.
Bajaj
,
C.
, and
Kim
,
M. S.
,
1991
, “
Convex Hulls of Objects Bounded by Algebraic Curves
,”
Algorithmica
,
6
(
1
), p.
533
.
46.
Belegundu
,
A. D.
, and
Zhang
,
S.
,
1992
, “
Robustness of Design Through Minimum Sensitivity
,”
ASME J. Mech. Des.
,
114
(
2
), pp.
213
217
.
You do not currently have access to this content.