Abstract

Rejecting impact force by adjusting footsteps during walking is crucial for a humanoid robot in an interactive environment. This paper proposes an optimal footstep regulation trigger for an analytic footstep regulation algorithm in the singular-linear-quadratic-preview walking controller framework. The trigger avoids regulating the footstep in every cycle to reduce the computational cost. Moreover, adjusting the footstep at the optimal trigger time achieves lower regulation cost than before and after the optimal trigger time. Before implementing the optimal trigger, we propose a method to identify the impact force occurrence based on the feedback acceleration and zero moment point. After that, a determining function about system states is calculated over time. According to the analysis, the regulation cost meets the minimum when the value of the determining function is null. The moment is taken as the optimal trigger time. The method is demonstrated by experiments with multiple directions of impact forces.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Koolen
,
T.
,
De Boer
,
T.
,
Rebula
,
J.
,
Goswami
,
A.
, and
Pratt
,
J.
,
2012
, “
Capturability-Based Analysis and Control of Legged Locomotion, Part 1: Theory and Application to Three Simple Gait Models
,”
Int. J. Rob. Res.
,
31
(
9
), pp.
1094
1113
.
2.
Jeong
,
H.
,
Sim
,
O.
,
Bae
,
H.
,
Lee
,
K.
,
Oh
,
J.
, and
Oh
,
J.-H.
,
2017
, “
Biped Walking Stabilization Based on Foot Placement Control Using Capture Point Feedback
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
5263
5269
.
3.
Englsberger
,
J.
,
Ott
,
C.
, and
Albu-Schäffer
,
A.
,
2015
, “
Three-Dimensional Bipedal Walking Control Based on Divergent Component of Motion
,”
IEEE Trans. Rob.
,
31
(
2
), pp.
355
368
.
4.
Castano
,
J. A.
,
Li
,
Z.
,
Zhou
,
C.
,
Tsagarakis
,
N.
, and
Caldwell
,
D.
,
2016
, “
Dynamic and Reactive Walking for Humanoid Robots Based on Foot Placement Control
,”
Int. J. Humanoid Rob.
,
13
(
2
), pp.
1
44
.
5.
Herdt
,
A.
,
Diedam
,
H.
,
Wieber
,
P.-B.
,
Dimitrov
,
D.
,
Mombaur
,
K.
, and
Diehl
,
M.
,
2010
, “
Online Walking Motion Generation With Automatic Footstep Placement
,”
Adv. Rob.
,
24
(
5-6
), pp.
719
737
.
6.
Caron
,
S.
, and
Pham
,
Q.-C.
,
2017
, “
When to Make a Step? Tackling the Timing Problem in Multi-contact Locomotion by Topp-mpc
,”
2017 IEEE-RAS 17th International Conference on Humanoid Robotics (Humanoids)
,
Birmingham, UK
,
Nov. 15–17
, pp.
522
528
.
7.
Griffin
,
R. J.
,
Wiedebach
,
G.
,
Bertrand
,
S.
,
Leonessa
,
A.
, and
Pratt
,
J.
,
2017
, “
Walking Stabilization Using Step Timing and Location Adjustment on the Humanoid Robot, Atlas
,”
2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Vancouver, BC, Canada
,
Sept. 24–28
, pp.
667
673
.
8.
Sugihara
,
T.
,
2009
, “
Dynamics Morphing From Regulator to Oscillator on Bipedal Control
,”
2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10–15
, pp.
2940
2945
.
9.
Yu
,
Z.
,
Zhou
,
Q.
,
Chen
,
X.
,
Li
,
Q.
,
Meng
,
L.
,
Zhang
,
W.
, and
Huang
,
Q.
,
2019
, “
Disturbance Rejection for Biped Walking Using Zero-Moment Point Variation Based on Body Acceleration
,”
IEEE Trans. Ind. Inf.
,
15
(
4
), pp.
2265
2276
.
10.
Kajita
,
S.
,
Kanehiro
,
F.
,
Kaneko
,
K.
,
Fujiwara
,
K.
,
Harada
,
K.
,
Yokoi
,
K.
, and
Hirukawa
,
H.
,
2003
, “
Biped Walking Pattern Generation by Using Preview Control of Zero-Moment Point
,”
2003 IEEE International Conference on Robotics and Automation (Cat. No. 03CH37422)
,
Taipei, Taiwan
,
Sept. 14–l9
, pp.
1620
1626
.
11.
Urata
,
J.
,
Nshiwaki
,
K.
,
Nakanishi
,
Y.
,
Okada
,
K.
,
Kagami
,
S.
, and
Inaba
,
M.
,
2011
, “
Online Decision of Foot Placement Using Singular LQ Preview Regulation
,” 2011
11th IEEE-RAS International Conference on Humanoid Robots
,
Bled, Slovenia
,
Oct. 26–28
, pp.
13
18
.
12.
Kryczka
,
P.
,
Kormushev
,
P.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2015
, “
Online Regeneration of Bipedal Walking Gait Pattern Optimizing Footstep Placement and Timing
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
3352
3357
.
13.
Khadiv
,
M.
,
Herzog
,
A.
,
Moosavian
,
S. A. A.
, and
Righetti
,
L.
,
2016
, “
Step Timing Adjustment: A Step Toward Generating Robust Gaits
,”
2016 IEEE-RAS 16th International Conference on Humanoid Robots (Humanoids)
,
Cancun, Mexico
,
Nov 15–17
, pp.
35
42
.
14.
Li
,
Z.
,
Zhou
,
C.
,
Castano
,
J.
,
Wang
,
X.
,
Negrello
,
F.
,
Tsagarakis
,
N. G.
, and
Caldwell
,
D. G.
,
2015
, “
Fall Prediction of Legged Robots Based on Energy State and Its Implication of Balance Augmentation: A Study on the Humanoid
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
5094
5100
.
15.
Takanishi
,
A.
,
Ishida
,
M.
,
Yamazaki
,
Y.
, and
Kato
,
I.
,
1985
, “
The Realization of Dynamic Walking by the Biped Walking Robot Wl-10rd
,”
Proceedings of the IEEE International Conference on Advanced Robotics
,
Tokyo, Japan
,
Sept. 9–10
, pp.
459
466
.
You do not currently have access to this content.