Abstract

In order to address the problem of functional rehabilitation after ankle fracture surgery, this paper presented a novel ankle fracture rehabilitation robot. The robot adopted R-3RRS-P hybrid structure, which was simple in structure and had two working modes: rehabilitation training and motion axis switching. Compared with the existing ankle rehabilitation robot, the proposed robot could simulate more realistic kinematics of the ankle joint complex. Additionally, different body types of patients could be adapted. The kinematic and static models were established in detail using geometric method and screw theory. The coverage of the healthy ankle motion ability was formulated as an optimization problem to improve the robot's performance. Multi-objective optimal design was carried out to determine the dimensional parameters. The interference-free working space was calculated by numerical method. A prototype of the proposed robot was developed, and a series of experiments were performed to evaluate the function and feasibility of the proposed robot.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Wu
,
A. M.
,
Bisignano
,
C.
,
James
,
S. L.
,
Abady
,
G. G.
,
Abedi
,
A.
,
Abu-Gharbieh
,
E.
,
Alhassan
,
R. K.
, et al
,
2021
, “
Global, Regional, and National Burden of Bone Fractures in 204 Countries and Territories, 1990–2019: A Systematic Analysis From the Global Burden of Disease Study 2019
,”
Lancet Heal Longev.
,
2
(
9
), pp.
E580
E592
.
2.
Schepers
,
T.
,
De Vries
,
M. R.
,
Van Lieshout
,
E. M. M.
, and
Van der Elst
,
M.
,
2013
, “
The Timing of Ankle Fracture Surgery and the Effect on Infectious Complications: A Case Series and Systematic Review of the Literature
,”
Int. Orthop.
,
37
(
3
), pp.
489
494
.
3.
Somersalo
,
A.
,
Paloneva
,
J.
,
Kautiainen
,
H.
,
Lonnroos
,
E.
,
Heinanen
,
M.
, and
Kiviranta
,
I.
,
2014
, “
Incidence of Fractures Requiring Inpatient Care
,”
Acta Orthop.
,
85
(
5
), pp.
525
530
.
4.
Pfeifer
,
C. G.
,
Grechenig
,
S.
,
Frankewycz
,
B.
,
Ernstberger
,
A.
,
Nerlich
,
M.
, and
Krutsch
,
W.
,
2015
, “
Analysis of 213 Currently Used Rehabilitation Protocols in Foot and Ankle Fractures
,”
Injury
,
46
, pp.
S51
S57
.
5.
Keene
,
D. J.
,
Williamson
,
E.
,
Bruce
,
J.
,
Willett
,
K.
, and
Lamb
,
S. E.
,
2014
, “
Early Ankle Movement Versus Immobilization in the Postoperative Management of Ankle Fracture in Adults: A Systematic Review and Meta-Analysis
,”
J. Orthop. Sports Phys. Ther.
,
44
(
9
), pp.
690
701
.
6.
Smeeing
,
D. P. J.
,
Houwert
,
R. M.
,
Briet
,
J. P.
,
Kelder
,
J. C.
,
Segers
,
M. J.
,
Verleisdonk
,
E. J.
,
Leenen
,
L. P.
, and
Hietbrink
,
F.
,
2015
, “
Weight-Bearing and Mobilization in the Postoperative Care of Ankle Fractures: A Systematic Review and Meta-Analysis of Randomized Controlled Trials and Cohort Studies
,”
PLoS One
,
10
(
2
), p.
e0118320
.
7.
Keene
,
D. J.
,
Costa
,
M. L.
,
Tutton
,
E.
,
Hopewell
,
S.
,
Barber
,
V. S.
,
Dutton
,
S. J.
,
Redmond
,
A. C.
,
Willett
,
K.
, and
Lamb
,
S. E.
,
2019
, “
Progressive Functional Exercise Versus Best Practice Advice for Adults Aged 50 Years or Over After Ankle Fracture: Protocol for a Pilot Randomised Controlled Trial in the UK – The Ankle Fracture Treatment: Enhancing Rehabilitation (AFTER) Study
,”
BMJ Open
,
9
(
11
), p.
e030877
.
8.
Zhang
,
M. M.
,
Davies
,
T. C.
, and
Xie
,
S. N.
,
2013
, “
Effectiveness of Robot-Assisted Therapy on Ankle Rehabilitation – A Systematic Review
,”
J. Neuroeng. Rehabil.
,
10
(
1
), pp.
1
16
.
9.
Khalid
,
Y. M.
,
Gouwanda
,
D.
, and
Parasuraman
,
S.
,
2015
, “
A Review on the Mechanical Design Elements of Ankle Rehabilitation Robot
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
229
(
6
), pp.
452
463
.
10.
Hussain
,
S.
,
Jamwal
,
P. K.
, and
Ghayesh
,
M. H.
,
2017
, “
State-of-the-Art Robotic Devices for Ankle Rehabilitation: Mechanism and Control Review
,”
Proc. Inst. Mech. Eng. Part H J. Eng. Med.
,
231
(
12
), pp.
1224
1234
.
11.
Miao
,
Q.
,
Zhang
,
M. M.
,
Wang
,
C. Z.
, and
Li
,
H. S.
,
2018
, “
Towards Optimal Platform-Based Robot Design for Ankle Rehabilitation: The State of the Art and Future Prospects
,”
J. Healthc. Eng.
,
2018
, p.
1534247
.
12.
Hussain
,
S.
,
Jamwal
,
P. K.
,
Vliet
,
P. V.
, and
Brown
,
N. A. T.
,
2021
, “
Robot Assisted Ankle Neuro-Rehabilitation: State of the Art and Future Challenges
,”
Expert Rev. Neurother.
,
21
(
1
), pp.
111
121
.
13.
Dong
,
M. J.
,
Zhou
,
Y.
,
Li
,
J. F.
,
Curtze
,
C.
,
Horak
,
F. B.
,
Safarpour
,
D.
, and
Nutt
,
J. G.
,
2021
, “
State of the Art in Parallel Ankle Rehabilitation Robot: A Systematic Review
,”
J. Neuroeng. Rehabil.
,
18
(
1
), pp.
1
15
.
14.
Roy
,
A.
,
Krebs
,
H. I.
,
Williams
,
D. J.
,
Bever
,
C. T.
,
Forrester
,
L. W.
,
Macko
,
R. M.
, and
Hogan
,
N.
,
2009
, “
Robot-Aided Neurorehabilitation: A Novel Robot for Ankle Rehabilitation
,”
IEEE Trans. Robot.
,
25
(
3
), pp.
569
582
.
15.
Michmizos
,
K. P.
,
Rossi
,
S.
,
Castelli
,
E.
,
Cappa
,
P.
, and
Krebs
,
H. I.
,
2015
, “
Robot-Aided Neurorehabilitation: A Pediatric Robot for Ankle Rehabilitation
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
6
), pp.
1056
1067
.
16.
Swaminathan
,
K.
,
Park
,
S.
,
Raza
,
F.
,
Porciuncula
,
F.
,
Lee
,
S.
,
Nuckols
,
R. W.
,
Awad
,
L. N.
, and
Walsh
,
C. J.
,
2021
, “
Ankle Resistance With a Unilateral Soft Exosuit Increases Plantarflexor Effort During Pushoff in Unimpaired Individuals
,”
J. Neuroeng. Rehabil.
,
18
(
1
), pp.
1
17
.
17.
Bae
,
J.
,
Siviy
,
C.
,
Rouleau
,
M.
,
Menard
,
N.
,
O'Donnell
,
K.
,
Geliana
,
I.
,
Athanassiu
,
M.
, et al
,
2018
, “
A Lightweight and Efficient Portable Soft Exosuit for Paretic Ankle Assistance in Walking After Stroke
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–25
, pp.
2820
2827
.
18.
Girone
,
M.
,
Burdea
,
G.
,
Bouzit
,
M.
,
Popescu
,
V.
, and
Deutsch
,
J. E.
,
2001
, “
A Stewart Platform-Based System for Ankle Telerehabilitation
,”
Auton. Robots
,
10
(
2
), pp.
203
212
.
19.
Girone
,
M.
,
Burdea
,
G.
, and
Bouzit
,
M.
,
1999
, “
‘Rutgers Ankle’ Orthopedic Rehabilitation Interface
,”
Proceedings of the ASME Dynamic Systems and Control Division
,
Nashville, TN
,
Nov. 14–19
, pp.
305
312
.
20.
Liu
,
G.
,
Gao
,
J.
,
Yue
,
H.
,
Zhang
,
X. J.
, and
Lu
,
G. D.
,
2006
, “
Design and Kinematics Analysis of Parallel Robots for Ankle Rehabilitation
,”
Proceedings of IEEE/RSJ International Conference on Intelligent Robots & Systems
,
Beijing, China
,
Oct. 9–13
, pp.
253
258
.
21.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2013
, “
Control Strategies for Patient-Assisted Training Using the Ankle Rehabilitation Robot (ARBOT)
,”
IEEE/ASME Trans. Mechatron.
,
18
(
6
), pp.
1799
1808
.
22.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High Performance 2-DOF Over-Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
2180
2186
.
23.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
Inverse-Kinematics-Based Control of a Redundantly Actuated Platform for Rehabilitation
,”
Proc. Inst. Mech. Eng. Part I J. Syst. Control Eng.
,
223
(
1
), pp.
53
70
.
24.
Saglia
,
J. A.
,
Tsagarakis
,
N. G.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2009
, “
A High-Performance Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
Int. J. Robot. Res.
,
28
(
9
), pp.
1216
1227
.
25.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Chen
,
Y.
,
2013
, “
Design and Kinematical Performance Analysis of a 3-RUS/RRR Redundantly Actuated Parallel Mechanism for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041003
.
26.
Wang
,
C.
,
Fang
,
Y.
, and
Guo
,
S.
,
2015
, “
Multi-Objective Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Differential Evolution Algorithm
,”
Chin. J. Mech. Eng.
,
28
(
4
), pp.
702
715
.
27.
Wang
,
C.
,
Fang
,
Y.
,
Guo
,
S.
, and
Zhou
,
C. C.
,
2015
, “
Design and Kinematic Analysis of Redundantly Actuated Parallel Mechanisms for Ankle Rehabilitation
,”
Robotica
,
33
(
2
), pp.
366
384
.
28.
Li
,
J.
,
Zuo
,
S.
,
Zhang
,
L.
,
Dong
,
M.
,
Zhang
,
Z.
,
Tao
,
C.
, and
Ji
,
R.
,
2020
, “
Mechanical Design and Performance Analysis of a Novel Parallel Robot for Ankle Rehabilitation
,”
ASME J. Mech. Rob.
,
12
(
5
), p.
051007
.
29.
Dong
,
M. J.
,
Kong
,
Y.
,
Li
,
J.
, and
Fan
,
W. P.
,
2020
, “
Kinematic Calibration of a Parallel 2-UPS/RRR Ankle Rehabilitation Robot
,”
J. Healthc. Eng.
,
2020
, p.
3053629
.
30.
Zuo
,
S.
,
Li
,
J.
,
Dong
,
M.
,
Zhou
,
X. D.
,
Fan
,
W. P.
, and
Kong
,
Y.
,
2020
, “
Design and Performance Evaluation of a Novel Wearable Parallel Mechanism for Ankle Rehabilitation
,”
Front. Neurorobotics
,
14
, p.
9
.
31.
Jamwal
,
P. K.
,
Xie
,
S.
, and
Aw
,
K. C.
,
2009
, “
Kinematic Design Optimization of a Parallel Ankle Rehabilitation Robot Using Modified Genetic Algorithm
,”
Robot Auton. Syst.
,
57
(
10
), pp.
1018
1027
.
32.
Jamwal
,
P. K.
, and
Hussain
,
S.
,
2016
, “
Design Optimization of a Cable Actuated Parallel Ankle Rehabilitation Robot: A Fuzzy Based Multi-Objective Evolutionary Approach
,”
J. Intell. Fuzzy Syst.
,
31
(
3
), pp.
1897
1908
.
33.
Jamwal
,
P. K.
, and
Hussain
,
S.
,
2016
, “
Multicriteria Design Optimization of a Parallel Ankle Rehabilitation Robot: Fuzzy Dominated Sorting Evolutionary Algorithm Approach
,”
IEEE Trans. Syst. Man Cybernet. Syst.
,
46
(
5
), pp.
589
597
.
34.
Zhang
,
M. M.
,
Cao
,
J.
,
Zhu
,
G.
,
Miao
,
Q.
,
Zeng
,
X. F.
, and
Xie
,
S. Q.
,
2017
, “
Reconfigurable Workspace and Torque Capacity of a Compliant Ankle Rehabilitation Robot (CARR)
,”
Robot. Auton. Syst.
,
98
, pp.
213
221
.
35.
Zhang
,
M. M.
,
Meng
,
W.
,
Davies
,
T. C.
,
Zhang
,
Y. X.
, and
Xie
,
S. Q.
,
2016
, “
A Robot-Driven Computational Model for Estimating Passive Ankle Torque With Subject-Specific Adaptation
,”
IEEE Trans. Biomed. Eng.
,
63
(
4
), pp.
814
821
.
36.
Zhang
,
M. M.
,
Xie
,
S. Q.
, and
Li
,
X. L.
,
2018
, “
Adaptive Patient-Cooperative Control of a Compliant Ankle Rehabilitation Robot (CARR) With Enhanced Training Safety
,”
IEEE Trans. Ind. Electron.
,
65
(
2
), pp.
1398
1407
.
37.
Zhang
,
M. M.
,
Mcdaid
,
A.
,
Veale
,
A. J.
,
Peng
,
Y. X.
, and
Xie
,
S. Q.
,
2019
, “
Adaptive Trajectory Tracking Control of a Parallel Ankle Rehabilitation Robot With Joint-Space Force Distribution
,”
IEEE Access
,
7
, pp.
85812
85820
.
38.
Baldisserri
,
B.
, and
Parenti-Castelli
,
V.
,
2012
, “
A New 3d Mechanism for Modeling the Passive Motion of the Tibia-Fibula-Ankle Complex
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
021004
.
39.
Wu
,
G.
,
Siegler
,
S.
,
Allard
,
P.
,
Kirtley
,
C.
,
Leardini
,
A.
,
Rosenbaum
,
D.
,
Whittle
,
M.
, et al
,
2002
, “
ISB Recommendation on Definitions of Joint Coordinate System of Various Joints for the Reporting of Human Joint Motion – Part 1: Ankle, Hip, and Spine
,”
J. Biomech.
,
35
(
4
), pp.
543
548
.
40.
Siegler
,
S.
,
Chen
,
J.
, and
Schneck
,
C. D.
,
1988
, “
The Three-Dimensional Kinematics and Flexibility Characteristics of the Human Ankle and Subtalar Joints–Part I: Kinematics
,”
ASME J. Biomech. Eng. Trans.
,
110
(
4
), pp.
364
373
.
41.
van den Bogert
,
A. J.
,
Smith
,
G. D.
, and
Nigg
,
B. M.
,
1994
, “
In Vivo Determination of the Anatomical Axes of the Ankle Joint Complex: an Optimization Approach
,”
J. Biomech.
,
27
(
12
), pp.
1477
1488
.
42.
Aman
,
M. N. S. B.
, and
Bin Basah
,
S. N.
,
2014
, “
Design and Kinematic Analysis of Parallel Robot for Ankle Rehabilitation
,”
Proceedings of the 2nd International Conference on Mechanics and Control Engineering (ICMCE)
,
Beijing, China
,
Sept. 1–2
, pp.
1279
1284
.
43.
Li
,
W. G.
,
Sun
,
T. Y.
,
Wang
,
C. B.
,
Duan
,
L.
,
Liu
,
Q.
,
Shen
,
Y.
,
Shi
,
Q.
, et al
,
2016
, “
Development of a 3 Freedom Ankle Robot to Assist the Rehabilitation Training
,”
Proceedings of the IEEE International Conference on Information and Automation (ICIA)
,
Ningbo, China
,
Aug. 1–3
, pp.
1606
1611
.
44.
Dul
,
J.
, and
Johnson
,
G. E.
,
1985
, “
A Kinematic Model of the Human Ankle
,”
J. Biomed. Eng.
,
7
(
2
), pp.
137
143
.
45.
Lewis
,
G. S.
,
Sommer
,
H. J.
, and
Piazza
,
S. J.
,
2006
, “
In Vitro Assessment of a Motion-Based Optimization Method for Locating the Talocrural and Subtalar Joint Axes
,”
ASME J. Biomech. Eng. Trans.
,
128
(
4
), pp.
596
603
.
46.
Abel
,
E. W.
,
Unger
,
A.
,
Fletcher
,
R.
, and
Jain
,
A. S.
,
2002
, “
Development of Clinical Measurement of the Axes of Rotation of the Ankle and Subtalar Joints
,”
Proceedings of the 24th Annual International Conference of the EMBS/BMES
,
Houston, TX, Japan
,
Oct. 23–26
, pp.
2455
2456
.
47.
Lewis
,
G. S.
,
Kirby
,
K. A.
, and
Piazza
,
S. J.
,
2007
, “
Determination of Subtalar Joint Axis Location by Restriction of Talocrural Joint Motion
,”
Gait Posture
,
25
(
1
), pp.
63
69
.
48.
Joshi
,
S. A.
, and
Tsai
,
L. W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
49.
Sun
,
T.
, and
Lian
,
B. B.
,
2018
, “
Stiffness and Mass Optimization of Parallel Kinematic Machine
,”
Mech. Mach. Theory
,
120
, pp.
73
88
.
50.
Song
,
Y. M.
,
Lian
,
B. B.
,
Sun
,
T.
,
Dong
,
G.
,
Qi
,
Y.
, and
Gao
,
H.
,
2014
, “
A Novel Five-Degree-of-Freedom Parallel Manipulator and Its Kinematic Optimization
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041008
.
51.
Wang
,
M.
,
Song
,
Y. M.
,
Lian
,
B. B.
,
Wang
,
P. F.
,
Chen
,
K. X.
, and
Sun
,
T.
,
2022
, “
Dimensional Parameters and Structural Topology Integrated Design Method of a Planar 5R Parallel Machining Robot
,”
Mech. Mach. Theory
,
175
, p.
104964
.
You do not currently have access to this content.