Abstract

Remote-actuated mechanisms that employ tendon sheaths or tether units can transmit mechanical force without directly connecting the actuators to the mechanism, but suffer from undesirable side effects like mechanical friction and induced external wrench disturbances on the distal side of the mechanism. In this work, a multiple shooting method is proposed as a superior method to the single shooting method to solve the Cosserat rod boundary value problems, to obtain the states of the system. With that, numerical experiments are provided to demonstrate the difficulty of solving these boundary value problems, simultaneously showing the validity of the proposed approach. 2D reconstruction experiments were conducted to show shape reconstruction capabilities. In addition, friction loss and 6-degree-of-freedom wrench estimations were also experimentally validated with the proposed mathematical model with 0.1679N and 0.0401Nm for root-mean-squared error (RMSE) force estimation and torque estimation error, respectively, while achieving a 3% mean absolute percentage steady-state friction estimation error. Finally, a modified resolved rate controller was applied to steer a remote tendon-driven continuum robot to compensate for friction loss for 3.1-m long tether units.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
McGarey
,
P. M.
,
2021
, “
Fit to be Tied: Embracing Tethered Robotics for Exploring Extreme Planetary Environments
,”
ASCEND 2021
,
Pasadena, CA
,
Nov. 15
, pp.
AIAA 2021
4244
.
2.
Lee
,
S. M.
,
Ng
,
W. H.
,
Tang
,
E.
, and
Foong
,
S.
,
2022
, “
Towards Fluid Force Estimation of a Water-Jetting Aerial Robot With Hybrid Kinematics-Force Model
,”
J. Field Robot.
,
39
(
6
), pp.
805
826
.
3.
Lee
,
S. M.
,
Chien
,
J. L.
,
Tang
,
E.
,
Lee
,
D.
,
Liu
,
J.
,
Lim
,
R.
, and
Foong
,
S.
,
2020
, “
Hybrid Kinematics Modelling for an Aerial Robot With Visual Controllable Fluid Ejection
,”
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
,
July 6–9
, pp.
832
838
.
4.
Lee
,
D.
,
Liu
,
J.
,
Lee
,
S. M.
, and
Foong
,
S.
,
2020
, “
Automated Dimensional Extraction of Different Regions Using Single Monocular Camera in Pseudo-Stereo Configuration
,”
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
,
July 6–9
, pp.
314
321
.
5.
Lee
,
D.
,
Liu
,
J.
,
Lim
,
R.
,
Chan
,
J. L.
, and
Foong
,
S.
,
2021
, “
Geometrical-Based Displacement Measurement With Pseudostereo Monocular Camera on Bidirectional Cascaded Linear Actuator
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
1923
1931
.
6.
Tan
,
C. H.
,
Hölttä-Otto
,
K.
, and
Foong
,
S.
,
2022
, “
Efficient Design Guidelines for Innovative Aerial Robot Design
,”
J. Mech. Des.
,
144
(
11
), p.
111403
.
7.
Chien
,
J. L.
,
Leong
,
C. T. L.
,
Liu
,
J.
,
Low
,
J.
, and
Foong
,
S.
,
2021
, “
Kinematic Model Predictive Control for a Novel Tethered Aerial Cable-Driven Continuum Robot
,”
2021 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Delft, Netherlands
,
July 12–16
, pp.
1348
1354
.
8.
Chien
,
J. L.
,
Leong
,
C.
,
Liu
,
J.
, and
Foong
,
S.
,
2023
, “
Design and Control of an Aerial-Ground Tethered Tendon-Driven Continuum Robot With Hybrid Routing
,”
Rob. Auton. Syst.
,
161
, p.
104344
.
9.
Phee
,
S. J.
,
Low
,
S. C.
,
Dario
,
P.
, and
Menciassi
,
A.
,
2010
, “
Tendon Sheath Analysis for Estimation of Distal End Force and Elongation for Sensorless Distal End
,”
Robotica
,
28
(
7
), pp.
1073
1082
.
10.
Kaneko
,
M.
,
Yamashita
,
T.
, and
Tanie
,
K.
,
1991
, “
Basic Considerations on Transmission Characteristics for Tendon Drive Robots
,”
Fifth International Conference on Advanced Robotics’ Robots in Unstructured Environments
,
Pisa, Italy
,
June 19–22
, Vol. 1, pp.
827
832
.
11.
Sun
,
Z.
,
Wang
,
Z.
, and
Phee
,
S. J.
,
2014
, “
Elongation Modeling and Compensation for the Flexible Tendon–Sheath System
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1243
1250
.
12.
Agrawal
,
V.
,
Peine
,
W. J.
, and
Yao
,
B.
,
2010
, “
Modeling of Transmission Characteristics Across a Cable-Conduit System
,”
IEEE Trans. Robot.
,
26
(
5
), pp.
914
924
.
13.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
, and
Phee
,
S.
,
2015
, “
A New Approach of Friction Model for Tendon-Sheath Actuated Surgical Systems: Nonlinear Modelling and Parameter Identification
,”
Mech. Mach. Theory
,
85
, pp.
14
24
.
14.
Dong
,
A.
,
Du
,
Z.
, and
Yan
,
Z.
,
2021
, “
Friction Modeling and Compensation for Haptic Master Manipulator Based on Deep Gaussian Process
,”
Mech. Mach. Theory
,
166
, p.
104480
.
15.
Li
,
X.
,
Cao
,
L.
,
Tiong
,
A. M. H.
,
Phan
,
P. T.
, and
Phee
,
S. J.
,
2019
, “
Distal-End Force Prediction of Tendon-Sheath Mechanisms for Flexible Endoscopic Surgical Robots Using Deep Learning
,”
Mech. Mach. Theory
,
134
, pp.
323
337
.
16.
Wan
,
M.
,
Dai
,
J.
,
Zhang
,
W.-H.
,
Xiao
,
Q.-B.
, and
Qin
,
X.-B.
,
2022
, “
Adaptive Feed-Forward Friction Compensation Through Developing an Asymmetrical Dynamic Friction Model
,”
Mech. Mach. Theory
,
170
, p.
104691
.
17.
Liu
,
Y.
, and
Alambeigi
,
F.
,
2021
, “
Effect of External and Internal Loads on Tension Loss of Tendon-Driven Continuum Manipulators
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
1606
1613
.
18.
Hong
,
J.
,
Hong
,
D.
, and
Kim
,
B. G.
,
2020
, “
Modeling Backlash-Like Hysteresis of Tendon Sheath Mechanism-Pair
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041012
.
19.
Wang
,
Z.
,
Jia
,
Z.
,
Qian
,
S.
,
Wang
,
D.
,
Yu
,
X.
, and
Liu
,
X.
,
2023
, “
An Improved Static Model for Bidirectional Notched Continuum Robot Considering the Cable Tension Loss
,”
ASME J. Mech. Rob.
,
16
(
7
), p.
071006
.
20.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Mechanics Modeling of Multisegment Rod-Driven Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041006
.
21.
Dong
,
X.
,
Wang
,
M.
,
Mohammad
,
A.
,
Ba
,
W.
,
Russo
,
M.
,
Norton
,
A.
,
Kell
,
J.
, and
Axinte
,
D.
,
2022
, “
Continuum Robots Collaborate for Safe Manipulation of High-Temperature Flame to Enable Repairs in Challenging Environments
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
4217
4220
.
22.
Chen
,
Y.
,
Zhang
,
C.
,
Wu
,
Z.
,
Zhao
,
J.
,
Yang
,
B.
,
Huang
,
J.
,
Luo
,
Q.
,
Wang
,
L.
, and
Xu
,
K.
,
2022
, “
The SHURUI System: A Modular Continuum Surgical Robotic Platform for Multiport, Hybrid-Port, and Single-Port Procedures
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
3186
3197
.
23.
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2015
, “
A Tendon-Driven Continuum Robot With Extensible Sections
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28–Oct. 2
, pp.
2130
2135
.
24.
Amanov
,
E.
,
Nguyen
,
T.-D.
, and
Burgner-Kahrs
,
J.
,
2021
, “
Tendon-Driven Continuum Robots With Extensible Sections—A Model-Based Evaluation of Path-Following Motions
,”
Int. J. Robot. Res.
,
40
(
1
), pp.
7
23
.
25.
Kanada
,
A.
, and
Mashimo
,
T.
,
2021
, “
Switching Between Continuum and Discrete States in a Continuum Robot With Dislocatable Joints
,”
IEEE Access
,
9
, pp.
34859
34867
.
26.
Bishop
,
C.
,
Russo
,
M.
,
Dong
,
X.
, and
Axinte
,
D.
,
2022
, “
A Novel Underactuated Continuum Robot With Shape Memory Alloy Clutches
,”
IEEE/ASME Trans. Mechatron.
,
27
(
6
), pp.
5339
5350
.
27.
Sheng
,
X.
,
Ma
,
Z.
,
Zhang
,
N.
, and
Dong
,
W.
,
2020
, “
Aerial Contact Manipulation With Soft End-Effector Compliance and Inverse Kinematic Compensation
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011023
.
28.
Erskine
,
J.
,
Chriette
,
A.
, and
Caro
,
S.
,
2019
, “
Wrench Analysis of Cable-Suspended Parallel Robots Actuated by Quadrotor Unmanned Aerial Vehicles
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
020909
.
29.
Rucker
,
D. C.
, and
Webster
,
R. J.
,
2014
,
Mechanics of Continuum Robots With External Loading and General Tendon Routing
,
Springer
,
Berlin, Heidelberg
, pp.
645
654
.
30.
Till
,
J.
,
Aloi
,
V.
, and
Rucker
,
C.
,
2019
, “
Real-Time Dynamics of Soft and Continuum Robots Based on Cosserat Rod Models
,”
Int. J. Robot. Res.
,
38
(
6
), pp.
723
746
.
31.
Bock
,
H.
, and
Plitt
,
K.
,
1984
, “
A Multiple Shooting Algorithm for Direct Solution of Optimal Control Problems
,”
IFAC Proc. Vol.
,
17
(
2
), pp.
1603
1608
,
9th IFAC World Congress: A Bridge Between Control Science and Technology
,
Budapest, Hungary
,
July 2–6
.
32.
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2020
, “
Solving Cosserat Rod Models via Collocation and the Magnus Expansion
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Las Vegas, NV
.
33.
Tummers
,
M.
,
Lebastard
,
V.
,
Boyer
,
F.
,
Troccaz
,
J.
,
Rosa
,
B.
, and
Chikhaoui
,
M. T.
,
2023
, “
Cosserat Rod Modeling of Continuum Robots From Newtonian and Lagrangian Perspectives
,”
IEEE Trans. Robot.
,
39
(
3
), pp.
2360
2378
.
34.
Rucker
,
D. C.
, and
Webster
,
R. J.
,
2011
, “
Computing Jacobians and Compliance Matrices for Externally Loaded Continuum Robots
,”
2011 IEEE International Conference on Robotics and Automation
,
Shanghai, China
,
May 9–13
, pp.
945
950
.
35.
Campisano
,
F.
,
Caló
,
S.
,
Remirez
,
A. A.
,
Chandler
,
J. H.
,
Obstein
,
K. L.
, and
Valdastri
,
P.
,
2021
, “
Closed-loop Control of Soft Continuum Manipulators Under Tip Follower Actuation
,”
Int. J. Robot. Res.
,
40
(
6–7
), pp.
923
938
.
36.
Zhao
,
Q.
,
Lai
,
J.
,
Huang
,
K.
,
Hu
,
X.
, and
Chu
,
H. K.
,
2022
, “
Shape Estimation and Control of a Soft Continuum Robot Under External Payloads
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
2511
2522
.
37.
Yip
,
M. C.
, and
Camarillo
,
D. B.
,
2014
, “
Model-Less Feedback Control of Continuum Manipulators in Constrained Environments
,”
IEEE Trans. Robot.
,
30
(
4
), pp.
880
889
.
38.
Rucker
,
C.
,
2018
, “
Integrating Rotations Using Nonunit Quaternions
,”
IEEE Rob. Autom. Lett.
,
3
(
4
), pp.
2979
2986
.
39.
Demmel
,
J. W.
,
1987
, “
On Condition Numbers and the Distance to the Nearest Ill-Posed Problem
,”
Numer. Math.
,
51
, pp.
251
289
.
40.
Frison
,
G.
, and
Diehl
,
M.
,
2020
, “
HPIPM: A High-Performance Quadratic Programming Framework for Model Predictive Control—This Research Was Supported by the German Federal Ministry for Economic Affairs and Energy (BMWi) via eco4wind (0324125B) and DyConPV (0324166B), and by DFG via Research Unit FOR 2401
,”
IFAC-PapersOnLine
,
53
(
2
), pp.
6563
6569
,
21st IFAC World Congress
.
41.
Verschueren
,
R.
,
Frison
,
G.
,
Kouzoupis
,
D.
,
Frey
,
J.
,
Duijkeren
,
N. V.
,
Zanelli
,
A.
,
Novoselnik
,
B.
,
Albin
,
T.
,
Quirynen
,
R.
, and
Diehl
,
M.
,
2021
, “
Acados—A Modular Open-Source Framework for Fast Embedded Optimal Control
,”
Mathematical Programming Computation
. 14, pp.
147
183
.
42.
Whitney
,
D. E.
,
1969
, “
Resolved Motion Rate Control of Manipulators and Human Prostheses
,”
IEEE Trans. Man-Machine Syst.
,
10
(
2
), pp.
47
53
.
You do not currently have access to this content.