Abstract

A lunar crewed vehicle (LCV) with improved maneuverability, mobility, and ride comfort is required for astronauts to conduct long-range scientific investigations and resource utilization on the Moon’s surface. This paper concentrates on designing a novel multi-functional compliant suspension for LCV to improve the above-mentioned performance. First, based on the requirement of high-speed traversing on the rough Lunar terrain, the required type of suspension motion is identified and the demanded suspension mechanism is obtained through structural evolution. Then, the kinematic analysis of the proposed suspension mechanism is conducted, and the steering kinematic model of the whole vehicle is established. A compliance analysis is completed, taking into account the actual design characteristics of the suspension mechanism. A multi-degrees-of-freedom dynamics model of the vehicle is developed, considering both wheel–ground separation and the deformation of wheels and soil. Simulations are conducted to verify full vehicle performance with the proposed suspension, and the results reveal that the design features better mobility and comfort in rough terrain with minimum turning radius, peak longitudinal acceleration, and root mean square reduced by 9.5%, 45.1%, and 21.4%, respectively.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Anand
,
M.
,
Crawford
,
I. A.
,
Balat-Pichelin
,
M.
,
Abanades
,
S.
,
Van Westrenen
,
W.
,
Péraudeau
,
G.
,
Jaumann
,
R.
, and
Seboldt
,
W.
,
2012
, “
A Brief Review of Chemical and Mineralogical Resources on the Moon and Likely Initial In Situ Resource Utilization (ISRU) Applications
,”
Planet. Space Sci.
,
74
(
1
), pp.
42
48
.
2.
Sanders
,
G. B.
, and
Larson
,
W. E.
,
2011
, “
Integration of In-Situ Resource Utilization Into Lunar/Mars Exploration Through Field Analogs
,”
Adv. Space Res.
,
47
(
1
), pp.
20
29
.
3.
Bennett
,
N. J.
,
Ellender
,
D.
, and
Dempster
,
A. G.
,
2020
, “
Commercial Viability of Lunar In-Situ Resource Utilization (ISRU)
,”
Planet. Space Sci.
,
182
, p.
104842
.
4.
Wallace
,
B. E.
, and
Rao
,
N. S.
,
1993
, “
Engineering Elements for Transportation on the Lunar Surface
,”
ASME Appl. Mech. Rev.
,
46
(
6
), p.
301
.
5.
Zakrajsek
,
J.
,
McKissock
,
D.
,
Woytach
,
J.
,
Zakrajsek
,
J.
,
Oswald
,
F.
,
McEntire
,
K.
,
Hill
,
G.
,
Abel
,
P.
,
Eichenberg
,
D.
, and
Goodnight
,
T.
,
2005
, “
Exploration Rover Concepts and Development Challenges
,”
1st Space Exploration Conference: Continuing the Voyage of Discovery
,
Orlando, FL
, p.
2525
.
6.
Heldmann
,
J. L.
,
Colaprete
,
A.
,
Elphic
,
R. C.
,
Bussey
,
B.
,
McGovern
,
A.
,
Beyer
,
R.
,
Lees
,
D.
, and
Deans
,
M.
,
2016
, “
Site Selection and Traverse Planning to Support a Lunar Polar Rover Mission: A Case Study at Haworth Crater
,”
Acta Astronaut.
,
127
, pp.
308
320
.
7.
Potts
,
N. J.
,
Gullikson
,
A. L.
,
Curran
,
N. M.
,
Dhaliwal
,
J. K.
,
Leader
,
M. K.
,
Rege
,
R. N.
,
Klaus
,
K. K.
, and
Kring
,
D. A.
,
2015
, “
Robotic Traverse and Sample Return Strategies for a Lunar Farside Mission to the Schrödinger Basin
,”
Adv. Space Res.
,
55
(
4
), pp.
1241
1254
.
8.
Rodríguez-Martínez
,
D.
,
Van Winnendael
,
M.
, and
Yoshida
,
K.
,
2019
, “
High-Speed Mobility on Planetary Surfaces: A Technical Review
,”
J. Field Robot.
,
36
(
8
), pp.
1436
1455
.
9.
Shrivastava
,
S.
,
Karsai
,
A.
,
Aydin
,
Y. O.
,
Pettinger
,
R.
,
Bluethmann
,
W.
,
Ambrose
,
R. O.
, and
Goldman
,
D. I.
,
2020
, “
Material Remodeling and Unconventional Gaits Facilitate Locomotion of a Robophysical Rover Over Granular Terrain
,”
Sci. Robot.
,
5
(
42
), p.
eaba3499
.
10.
Wettergreen
,
D.
,
Moreland
,
S.
,
Skonieczny
,
K.
,
Jonak
,
D.
,
Kohanbash
,
D.
, and
Teza
,
J.
,
2010
, “
Design and Field Experimentation of a Prototype Lunar Prospector
,”
Int. J. Robot. Res.
,
29
(
12
), pp.
1550
1564
.
11.
Harvey
,
B.
,
2006
,
Soviet and Russian Lunar Exploration
,
Springer Science & Business Media
,
Berlin
.
12.
Asnani
,
V.
,
Delap
,
D.
, and
Creager
,
C.
,
2009
, “
The Development of Wheels for the Lunar Roving Vehicle
,”
J. Terramech.
,
46
(
3
), pp.
89
103
.
13.
Benaroya
,
H.
,
2017
, “
Lunar Habitats: A Brief Overview of Issues and Concepts
,”
Reach
,
7
, pp.
14
33
.
14.
Yunzhou
,
F.
, and
Honglei
,
Z.
,
2020
, “
High-Temperature Fatigue Life Prediction Method for Rubber Bushing of New-Energy Vehicles Based on Modified Fatigue Damage Theory
,”
Mater. Res. Express
,
7
(
1
), p.
015346
.
15.
Chai
,
T.
,
Singh
,
R.
, and
Dreyer
,
J.
,
2013
, “
Dynamic Stiffness of Hydraulic Bushing With Multiple Internal Configurations
,”
SAE Int. J. Passenger Cars-Mech. Syst.
,
6
(
2013-01-1924
), pp.
1209
1216
.
16.
Goodarzi
,
A.
,
Lu
,
Y.
, and
Khajepour
,
A.
,
2023
,
Vehicle Suspension System Technology and Design
,
Springer Nature
,
Switzerland
.
17.
Costes
,
N. C.
,
Farmer
,
J. E.
, and
George
,
E. B.
,
1972
, “
Mobility performance of the lunar roving vehicle: Terrestrial studies: Apollo 15 results
,”
Intern. Conf. of the Intern. Soc. for Terrain-Vehicle Systems
,
Stockholm and Kiruna, Sweden
,
Apr. 24–28
.
18.
Florenskii
,
C.
,
Basilevskii
,
A.
,
Bobina
,
N.
,
Burba
,
G.
,
Grebennik
,
N.
,
Kuzmin
,
R.
,
Polosukhin
,
B.
,
Popovich
,
V.
,
Pronin
,
A.
, and
Ronca
,
L.
,
1978
, “
The Floor of Crater le Monier-a Study of Lunokhod 2 Data
”. In
Lunar and Planetary Science Conference, 9th, Houston, TX, Mar. 13–17, Proceedings. Volume 2. (A79-39176 16-91) New York, Pergamon Press, Inc., 1978, Vol. 9
, pp.
1449
1458
.
19.
Harrison
,
D. A.
,
Ambrose
,
R.
,
Bluethmann
,
B.
, and
Junkin
,
L.
,
2008
, “
Next Generation Rover for Lunar Exploration
,”
2008 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 1–8
, pp.
1
14
.
20.
Bluethmann
,
B.
,
Herrera
,
E.
,
Hulse
,
A.
,
Figuered
,
J.
,
Junkin
,
L.
,
Markee
,
M.
, and
Ambrose
,
R. O.
,
2010
, “
An Active Suspension System for Lunar Crew Mobility
,”
2010 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar 6–13
, pp.
1
9
.
21.
Fong
,
T.
,
2020
, “
Volatiles Investigating Polar Exploration Rover
,” UC Berkeley Mechanical Engineering Seminar, Berkeley, CA, Nov. 2.
22.
Cordes
,
F.
,
Kirchner
,
F.
, and
Babu
,
A.
,
2018
, “
Design and Field Testing of a Rover With an Actively Articulated Suspension System in a Mars Analog Terrain
,”
J. Field Robot.
,
35
(
7
), pp.
1149
1181
.
23.
Townsend
,
J.
,
Biesiadecki
,
J.
, and
Collins
,
C.
,
2010
, “
Athlete Mobility Performance With Active Terrain Compliance
,”
2010 IEEE Aerospace Conference
,
Big Sky, MT
,
Mar. 6–13
, pp.
1
7
.
24.
Yang
,
T.-L.
,
Liu
,
A.-X.
,
Jin
,
Q.
,
Luo
,
Y.-F.
,
Shen
,
H.-P.
, and
Hang
,
L.-B.
,
2008
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des
,
131
(
2
), p.
021001
.
25.
Jin
,
Q.
,
Luo
,
Y.-F.
, and
Shen
,
H.-P.
,
2009
, “
Position and Orientation Characteristic Equation for Topological Design of Robot Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021001
.
26.
Hervé
,
J. M.
,
1978
, “
Analyse Structurelle Des Mécanismes Par Groupe Des Déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
27.
EARL
,
C.
,
1983
, “
Some Kinematic Structures for Robot Manipulator Designs
,”
ASME J. MTAD
,
105
(
1
), p.
15
.
28.
Gao
,
F.
,
Li
,
W.
,
Zhao
,
X.
,
Jin
,
Z.
, and
Zhao
,
H.
,
2002
, “
New Kinematic Structures for 2-, 3-, 4-, and 5-DOF Parallel Manipulator Designs
,”
Mech. Mach. Theory
,
37
(
11
), pp.
1395
1411
.
29.
Wang
,
W.
, and
Chen
,
X.
,
2019
, “
Design Methodology for Wheel Corner Module Topology Based on Position and Orientation Characteristics
,”
Mech. Mach. Theory
,
136
, pp.
122
140
.
30.
Jin
,
X.
,
Fang
,
Y.
,
Zhang
,
D.
, and
Gong
,
J.
,
2020
, “
Design of Dexterous Hands Based on Parallel Finger Structures
,”
Mech. Mach. Theory
,
152
, p.
103952
.
31.
Jin
,
X.
,
Fang
,
Y.
,
Qu
,
H.
, and
Guo
,
S.
,
2018
, “
A Class of Novel 4-DOF and 5-DOF Generalized Parallel Mechanisms Wth High Performance
,”
Mech. Mach. Theory
,
120
, pp.
57
72
.
32.
Zhang
,
J.
,
Jin
,
Z.
, and
Feng
,
H.
,
2018
, “
Type Synthesis of a 3-Mixed-DOF Protectable Leg Mechanism of a Firefighting Multi-legged Robot Based on GF Set Theory
,”
Mech. Mach. Theory
,
130
, pp.
567
584
.
33.
Reina
,
G.
, and
Foglia
,
M.
,
2013
, “
On the Mobility of All-Terrain Rovers
,”
Ind. Robot
,
40
(
2
), pp.
121
131
.
34.
Reina
,
G.
,
Leanza
,
A.
, and
Messina
,
A.
,
2018
, “
On the Vibration Analysis of Off-Road Vehicles: Influence of Terrain Deformation and Irregularity
,”
J. Vib. Control
,
24
(
22
), pp.
5418
5436
.
35.
Ding
,
L.
,
Deng
,
Z.
,
Gao
,
H.
,
Tao
,
J.
,
Iagnemma
,
K. D.
, and
Liu
,
G.
,
2015
, “
Interaction Mechanics Model for Rigid Driving Wheels of Planetary Rovers Moving on Sandy Terrain With Consideration of Multiple Physical Effects
,”
J. Field Robot.
,
32
(
6
), pp.
827
859
.
36.
Yang
,
H.
,
Ding
,
L.
,
Gao
,
H.
,
Wang
,
Z.
,
Lan
,
Q.
,
Liu
,
G.
,
Liu
,
Z.
,
Li
,
W.
, and
Deng
,
Z.
,
2022
, “
High-Fidelity Dynamic Modeling and Simulation of Planetary Rovers Using Single-Input-Multi-Output Joints With Terrain Property Mapping
,”
IEEE Trans. Robot.
,
38
(
5
), pp.
3238
3258
.
37.
Wang
,
J.
,
Liu
,
Y.
,
Ding
,
L.
,
Yan
,
B.
,
Gao
,
H.
,
Song
,
B.
,
Gao
,
T.
,
Hao
,
Y.
, and
Sun
,
M.
,
2015
, “
Dynamic Modeling and Vibration Analysis for the Vehicles With Rigid Wheels Based on Wheel-Terrain Interaction Mechanics
,”
Shock Vib.
,
2015
, p.
751890
.
38.
Johnson
,
K. A.
,
2021
, “
High-Speed Dynamic Response for Lunar Rovers
,”
17th Biennial International Conference on Engineering, Science, Construction, and Operations in Challenging Environments
,
Virtual Conference
,
Apr. 19–23
, pp.
405
415
.
39.
Guo
,
Z.
,
Wu
,
W.
, and
Yuan
,
S.
,
2022
, “
Longitudinal-Vertical Dynamics of Wheeled Vehicle Under Off-Road Conditions
,”
Veh. Syst. Dyn.
,
60
(
2
), pp.
470
490
.
40.
Pazooki
,
A.
,
Rakheja
,
S.
, and
Cao
,
D.
,
2012
, “
Modeling and Validation of Off-Road Vehicle Ride Dynamics
,”
Mech. Syst. Signal Process.
,
28
, pp.
679
695
.
41.
Zhu
,
J. J.
,
Khajepour
,
A.
, and
Esmailzadeh
,
E.
,
2012
, “
Total Dynamic Response of a PSS Vehicle Negotiating Asymmetric Road Excitations
,”
Veh. Syst. Dyn.
,
50
(
12
), pp.
1835
1859
.
42.
Fan
,
C.
,
Liu
,
H.
, and
Zhang
,
Y.
,
2013
, “
Type Synthesis of 2t2r, 1t2r and 2r Parallel Mechanisms
,”
Mech. Mach. Theory
,
61
, pp.
184
190
.
43.
Jin
,
X.
,
Fang
,
Y.
,
Zhang
,
D.
, and
Zhang
,
H.
,
2020
, “
Synthesis of 3-[p][s] Parallel Mechanism-Inspired Multimode Dexterous Hands With Parallel Finger Structure
,”
ASME J. Mech. Des.
,
142
(
8
), p.
083301
.
44.
Grand
,
C.
,
Benamar
,
F.
, and
Plumet
,
F.
,
2010
, “
Motion Kinematics Analysis of Wheeled-Legged Rover Over 3d Surface With Posture Adaptation
,”
Mech. Mach. Theory
,
45
(
3
), pp.
477
495
.
45.
Wang
,
K.
,
1998
, “
Dynamic Analysis of a Tracked Snowplowing Vehicle and Assessment of Ride Quality
,” Ph.D. dissertation, Concordia University, Montréal, Québec.
46.
Aguilera-Marinovic
,
S.
,
Torres-Torriti
,
M.
, and
Auat-Cheein
,
F.
,
2016
, “
General Dynamic Model for Skid-Steer Mobile Manipulators With Wheel-Ground Interactions
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
433
444
.
47.
Bekker
,
M. G.
,
1956
, “Theory of Land Locomotion: The Mechanics of Vehicle Mobility”. https://catalog.hathitrust.org/Record/001619932.
48.
ISO/TC
,
T. C.
,
Vibration
,
M.
, and
Measurement
,
S. S. S.
,
1995
,
Mechanical Vibration–Road Surface Profiles–Reporting of Measured Data
, Vol.
8608
,
International Organization for Standardization
,
Switzerland
.
49.
Liang
,
Z.
,
Wang
,
Y.
,
Chen
,
G. S.
, and
Gao
,
H.
,
2015
, “
A Mechanical Model for Deformable and Mesh Pattern Wheel of Lunar Roving Vehicle
,”
Adv. Space Res.
,
56
(
11
), pp.
2515
2526
.
50.
Zhu
,
J. J.
,
Khajepour
,
A.
,
Esmailzadeh
,
E.
, and
Kasaiezadeh
,
A.
,
2012
, “
Ride Quality Evaluation of a Vehicle With a Planar Suspension System
,”
Veh. Syst. Dyn.
,
50
(
3
), pp.
395
413
.
51.
Vidal
,
V.
,
Stano
,
P.
,
Tavolo
,
G.
,
Dhaens
,
M.
,
Tavernini
,
D.
,
Gruber
,
P.
, and
Sorniotti
,
A.
,
2022
, “
On Pre-Emptive In-Wheel Motor Control for Reducing the Longitudinal Acceleration Oscillations Caused by Road Irregularities
,”
IEEE Trans. Veh. Technol.
,
71
(
9
), pp.
9322
9337
.
You do not currently have access to this content.