Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The need for autonomous infrastructure inspections performed by mobile robots is becoming increasingly prevalent, to mitigate human error and inspect critical infrastructure with increased frequency, while reducing costs. Electric distribution substations contain a variety of high-power equipment that may occasionally fail, and we focus on inspecting pothead compartments as a representative test case. Frequent measurements of acoustic and transient earth voltage data can indicate degradation before failures occur. Handheld partial discharge (PD) sensors can gather these types of data. Measurements using PD sensors can be automated using a mobile manipulation platform with a custom end-effector. Accurate mapping, localization, and navigation are required to perform autonomous inspection tasks in indoor environments with unmanned ground vehicles. Computer vision and precise manipulator control are necessary for successful handheld sensor interactions. In this paper, we present and analyze a custom-integrated mobile manipulation system capable of performing these functions, which achieves a tradeoff between the small size needed to navigate through low-clearance areas, and the reach capabilities needed to collect the required measurements from pothead compartments.

References

1.
Runde
,
M.
,
2012
, “
Failure Frequencies for High-Voltage Circuit Breakers, Disconnectors, Earthing Switches, Instrument Transformers, and Gas-insulated Switchgear
,”
IEEE Trans. Power Deliv.
,
28
(
1
), pp.
529
530
.
2.
Lu
,
S.
,
Zhang
,
Y.
, and
Su
,
J.
,
2017
, “
Mobile Robot for Power Substation Inspection: A Survey
,”
IEEE/CAA J. Autom. Sinica
,
4
(
4
), pp.
830
847
.
3.
Huang
,
J.
,
Wang
,
J.
,
Tan
,
Y.
,
Wu
,
D.
, and
Cao
,
Y.
,
2020
, “
An Automatic Analog Instrument Reading System Using Computer Vision and Inspection Robot
,”
IEEE Trans. Instrum. Meas.
,
69
(
9
), pp.
6322
6335
.
4.
Xiao
,
Y.
,
Yan
,
Y.
,
Yu
,
Y.
,
Wang
,
B.
, and
Liang
,
Y.
,
2022
, “
Research on Pose Adaptive Correction Method of Indoor Rail Mounted Inspection Robot in GIS Substation
,”
Energy Rep.
,
8
(Suppl. 6), pp.
696
705
.
5.
Santos
,
R.
,
Silva
,
M. C.
,
Santos
,
R. L.
,
Klippel
,
E.
, and
Oliveira
,
R. A. R.
,
2023
, “
A Mobile Robot Based on Edge AI
,” Anais do L Seminário Integrado de Software e Hardware,
SBC
, pp.
191
202
.
6.
Tan
,
K.
,
Luo
,
W.
, and
Li
,
T.
,
2021
, “
An Intelligent and Collaborative Substation Inspection System
,”
Proceedings of the IEEE Sustainable Power and Energy Conference (iSPEC)
,
Nanjing, China
,
Dec. 23–25
, pp.
4120
4124
.
7.
Dandurand
,
P.
,
Beaudry
,
J.
,
Hébert
,
C.
,
Mongenot
,
P.
,
Bourque
,
J.
, and
Hovington
,
S.
,
2022
, “
All-Weather Autonomous Inspection Robot for Electrical Substations
,”
Proceedings of the IEEE/SICE International Symposium on System Integration (SII)
, pp.
303
308
.
8.
Luo
,
R.
,
Tang
,
M.
, and
Liang
,
D.
,
2014
, “
On-Site Partial Discharge Test of Medium Voltage Switchgear by Time of Arrival Method
,”
Proceedings of the 17th International Conference on Electrical Machines and Systems (ICEMS)
,
Berlin, Germany
,
Sept. 2–5
, pp.
1023
1028
.
9.
Walton
,
C.
,
Carter
,
S.
,
Michel
,
M.
, and
Eastham
,
C.
,
2009
, “
Avoidance of MV Switchgear Failure Case Studies of On-Line Condition Monitoring
,”
Proceedings of CIRED 2009 – the 20th International Conference and Exhibition on Electricity Distribution–Part 1
,
Prague, Czech Republic
,
June 8–11
, pp.
1
4
.
10.
Dehghanian
,
P.
,
Popovic
,
T.
, and
Kezunovic
,
M.
,
2014
, “
Circuit Breaker Operational Health Assessment Via Condition Monitoring Data
,”
Proceedings of the North American Power Symposium (NAPS)
,
Pullman, WA
,
Sept. 7–9
, pp.
1
6
.
11.
Pearson
,
E.
, and
Englot
,
B.
,
2023
, “
A Robust and Rapidly Deployable Waypoint Navigation Architecture for Long-Duration Operations in GPS-Denied Environments
,”
Proceedings of the 20th International Conference on Ubiquitous Robots (UR)
,
Honolulu, HI
,
June 25–28
, pp.
319
326
.
12.
Pearson
,
E.
,
Szenher
,
P.
,
Huang
,
C.
, and
Englot
,
B.
,
2023
, “
Mobile Manipulation Platform for Autonomous Indoor Inspection in Low-Clearance Areas
,”
Proceedings of the ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Boston, MA
,
Aug. 20–23
.
13.
Köhler
,
J.
,
Pagani
,
A.
, and
Stricker
,
D.
,
2011
, “
Detection and Identification Techniques for Markers Used in Computer Vision
,”
Visualization of Large and Unstructured Data Sets-Applications in Geospatial Planning, Modeling and Engineering (IRTG 1131 Workshop)
,
Bodega Bay, CA
,
Mar. 19–21
,
Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
.
14.
Creusot
,
C.
, and
Munawar
,
A.
,
2015
, “
Real-Time Barcode Detection in the Wild
,”
Proceedings of the IEEE Winter Conference on Applications of Computer Vision
,
Waikoloa, HI
,
Jan. 6–9
, pp.
239
245
.
15.
Patidar
,
V.
, and
Tiwari
,
R.
,
2016
, “
Survey of Robotic Arm and Parameters
,”
Proceedings of the International Conference on Computer Communication and Informatics (ICCCI)
,
Coimbatore, India
,
Jan. 7–9
, pp.
1
6
.
16.
Pfeiffer
,
F.
, and
Johanni
,
R.
,
1987
, “
A Concept for Manipulator Trajectory Planning
,”
IEEE J. Rob. Autom.
,
3
(
2
), pp.
115
123
.
17.
Jaillet
,
L.
, and
Porta
,
J. M.
,
2012
, “
Path Planning Under Kinematic Constraints by Rapidly Exploring Manifolds
,”
IEEE Trans. Rob.
,
29
(
1
), pp.
105
117
.
18.
Ko
,
I.
,
Kim
,
B.
, and
Park
,
F. C.
,
2014
, “
Randomized Path Planning on Vector Fields
,”
Int. J. Rob. Res.
,
33
(
13
), pp.
1664
1682
.
19.
Görner
,
M.
,
Haschke
,
R.
,
Ritter
,
H.
, and
Zhang
,
J.
,
2019
, “
MoveIt! Task Constructor for Task-Level Motion Planning
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
190
196
.
20.
Abe
,
A.
,
2011
, “
Trajectory Planning for Flexible Cartesian Robot Manipulator by Using Artificial Neural Network: Numerical Simulation and Experimental Verification
,”
Robotica
,
29
(
5
), pp.
797
804
.
21.
Brzozowska
,
E.
,
Lima
,
O.
, and
Ventura
,
R.
,
2019
, “
A Generic Optimization Based Cartesian Controller for Robotic Mobile Manipulation
,”
Proceedings of the IEEE International Conference on Robotics and Automation (ICRA)
,
Montreal, Canada
,
May 20–24
, pp.
2054
2060
.
22.
Chen
,
Y.
,
Luo
,
X.
,
Han
,
B.
,
Luo
,
Q.
, and
Qiao
,
L.
,
2020
, “
Model Predictive Control With Integral Compensation for Motion Control of Robot Manipulator in Joint and Task Spaces
,”
IEEE Access
,
8
, p.
107063
.
23.
Khan
,
A. H.
,
Li
,
S.
, and
Luo
,
X.
,
2019
, “
Obstacle Avoidance and Tracking Control of Redundant Robotic Manipulator: An RNN-Based Metaheuristic Approach
,”
IEEE Trans. Ind. Inf.
,
16
(
7
), pp.
4670
4680
.
24.
Merckaert
,
K.
,
Convens
,
B.
,
Wu
,
C.
,
Roncone
,
A.
,
Nicotra
,
M. M.
, and
Vanderborght
,
B.
,
2022
, “
Real-Time Motion Control of Robotic Manipulators for Safe Human–Robot Coexistence
,”
Rob. Comput. Integr. Manuf.
,
73
, p.
102223
.
You do not currently have access to this content.