Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

The current study presents the development and validation of a compliant Delta robot with a monolithic structure, which has been fabricated using additive manufacturing (AM). The monolithic design and the use of AM accelerate the robot development cycle by enabling rapid prototyping and deployment while also facilitating experimentation with novel or different robot kinematics. The use of flexible joints for robots presents a challenge in achieving sufficient workspaces. However, parallel architectures are well suited for incorporating compliant joints, as they require lower ranges of motion for individual joints compared to serial architectures. Therefore, the Delta configuration has been chosen for this study. Multibody flexible dynamics (MfBD) simulations have been used as a means to guide design choices and simulate the structural behaviour of the robot. A design for additive manufacturing (DfAM) technique has been adopted to minimize the need for support structures and maximize mechanical strength. The quantitative evaluation of the Delta’s overall performance has been conducted in terms of stiffness and precision. The stiffness test aimed to gauge the robot’s ability to withstand applied loads, whereas the repeatability test assessed its precision and accuracy. This approach offers a promising path for robot design with significant potential for future advancements and practical applications while highlighting the trade-offs that designers should consider when adopting this methodology.

References

1.
Clavel
,
R.
,
1987
, “Device for Displacing and Positioning an Element in Space,” WIPO Patent WO1987003528A1.
2.
Staicu
,
S.
,
2019
,
Dynamics of Parallel Robots
,
Springer International Publishing
,
Cham, Switzerland
.
3.
Do
,
T. V.
,
City
,
H. C. M.
,
Viet
,
N. Q.
,
Nam
,
N. Q.
,
Dat
,
P. N.
,
Vinh
,
D. D.
, and
Hung
,
T. V.
,
2021
, “
Design of Delta Robot Using Image Processing for Product Sorting Process
,”
2021 International Conference on System Science and Engineering (ICSSE)
,
Nha Trang City, Vietnam
,
Aug. 26–28
, pp.
210
214
.
4.
Xiao
,
B.
,
Alamdar
,
A.
,
Song
,
K.
,
Ebrahimi
,
A.
,
Gehlbach
,
P.
,
Taylor
,
R. H.
, and
Iordachita
,
I.
,
2022
, “
Delta Robot Kinematic Calibration for Precise Robot-Assisted Retinal Surgery
,”
2022 International Symposium on Medical Robotics, ISMR 2022
,
Atlanta, GA
,
Apr. 13–15
, pp.
1
7
.
5.
Okunevich
,
I.
,
Trinitatova
,
D.
,
Kopanev
,
P.
, and
Tsetserukou
,
D.
,
2021
, “
Deltacharger: Charging Robot With Inverted Delta Mechanism and CNN-Driven High Fidelity Tactile Perception for Precise 3d Positioning
,”
IEEE Rob. Autom. Lett.
,
6
(
4
), pp.
7604
7610
.
6.
Hirano
,
J.
,
Tanaka
,
D.
,
Watanabe
,
T.
, and
Nakamura
,
T.
,
2014
, “
Development of Delta Robot Driven by Pneumatic Artificial Muscles
,” 2014 IEEE/ASME International Conference on Advanced Intelligent Mechatronics,
Besançon, France
,
July 8–11
, pp.
1400
1405
.
7.
Howell
,
L. L.
,
2001
,
Compliant Mechanisms
,
John Wiley and Sons
,
New York
.
8.
Howell
,
L. L.
,
Magleby
,
S. P.
, and
Olsen
,
B. M.
,
2013
,
Handbook of Compliant Mechanisms
,
John Wiley and Sons
,
Chirchesterm, UK.
9.
Lobontiu
,
N.
,
2001
,
Compliant Mechanisms: Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
10.
Raatz
,
A.
,
Wrege
,
J.
,
Soetebier
,
S.
, and
Hesselbach
,
J.
,
2004
, “
High Precision Compliant Parallel Robot With an Optimized Large Workspace
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Salt Lake City, UT
,
Sept. 28–Oct. 2
, pp.
1007
1014
.
11.
Correa
,
J. E.
,
Toombs
,
J.
,
Toombs
,
N.
, and
Ferreira
,
P. M.
,
2016
, “
Laminated Micro-machine: Design and Fabrication of a Flexure-Based Delta Robot
,”
J. Manuf. Process.
,
24
, pp.
370
375
.
12.
Sreetharan
,
P. S.
,
Whitney
,
J. P.
,
Strauss
,
M. D.
, and
Wood
,
R. J.
,
2012
, “
Monolithic Fabrication of Millimeter-Scale Machines
,”
J. Micromech. Microeng.
,
22
, p.
055027
.
13.
McClintock
,
H.
,
Fatma
,
Temel
,
Koh
,
J.-S.
, and
Wood
,
R. J.
,
2018
, “
The Millidelta: A High-Bandwidth, High-Precision, Millimeter-Scale Delta Robot
,”
Sci. Rob.
,
3
(
14
).
14.
Mannam
,
P.
,
Kroemer
,
O.
, and
Temel
,
F.
,
2021
, “
Characterization of Compliant Parallelogram Links for 3D-printed Delta Manipulators
,”
International Symposium on Experimental Robotics
,
Malta
,
Nov. 15–18
, pp.
75
84
.
15.
Mannam
,
P.
,
Rudich
,
A.
,
Zhang
,
K.
,
Veloso
,
M. M.
,
Kroemer
,
O.
, and
Temel
,
F. Z.
,
2021
, “
A Low-cost Compliant Gripper Using Cooperative Mini-Delta Robots for Dexterous Manipulation
,” Robotics: Science and Systems XVII, Virtual, July 12–16.
16.
Patil
,
S.
,
Alvares
,
S. C.
,
Mannam
,
P.
,
Kroemer
,
O.
, and
Temel
,
F. Z.
,
2022
, “
Deltaz: An Accessible Compliant Delta Robot Manipulator for Research and Education
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Kyoto, Japan
,
Oct. 23–27
, pp.
13213
13219
.
17.
Henein
,
S.
,
Spanoudakis
,
P.
,
Droz
,
S.
,
Myklebust
,
L. I.
, and
Onillon
,
E.
,
2003
, “
Flexure Pivot for Aerospace Mechanisms
,”
10th European Space Mechanisms and Tribology Symposium
,
San Sebastian, Spain
,
Sept. 25
, pp.
285
288
.
18.
Fowler
,
R. M.
,
Maselli
,
A.
,
Pluimers
,
P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Flex-16: A Large-Displacement Monolithic Compliant Rotational Hinge
,”
Mech. Mach. Theory.
,
82
, pp.
203
217
.
19.
Merriam
,
E. G.
,
Jones
,
J. E.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Monolithic 2 DOF Fully Compliant Space Pointing Mechanism
,”
Mech. Sci.
,
4
, pp.
381
390
.
20.
Kiener
,
L.
,
Saudan
,
H.
,
Cosandier
,
F.
,
Perruchoud
,
G.
, and
Spanoudakis
,
P.
,
2019
, “
Innovative Concept of Compliant Mechanisms Made by Additive Manufacturing
,”
MATEC Web Conf.
,
304
, p.
7002
.
21.
Sharkey
,
J. P.
,
Foo
,
D. C.
,
Kabla
,
A.
,
Baumberg
,
J. J.
, and
Bowman
,
R. W.
,
2016
, “
A One-Piece 3d Printed Flexure Translation Stage for Open-Source Microscopy
,”
Rev. Sci. Instrum.
,
87
(
2
), p.
025104
.
22.
Baggetta
,
M.
,
Berselli
,
G.
,
Palli
,
G.
, and
Melchiorri
,
C.
,
2022
, “
Design, Modeling, and Control of a Variable Stiffness Elbow Joint
,”
Int. J. Adv. Manuf. Technol.
,
122
(
11
), pp.
4437
4451
.
23.
Almeida
,
A.
,
Andrews
,
G.
,
Jaiswal
,
D.
, and
Hoshino
,
K.
,
2019
, “
The Actuation Mechanism of 3D Printed Flexure-Based Robotic Microtweezers
,”
Micromachines
,
10
(
7
), p.
470
.
24.
Ottonello
,
E.
,
Baggetta
,
M.
,
Berselli
,
G.
, and
Parmiggiani
,
A.
,
2023
, “
Design and Validation of a Push-Latch Gripper Made in Additive Manufacturing
,”
IEEE/ASME Trans. Mechatron.
,
28
(
4
), pp.
2083
2091
.
25.
Lussenburg
,
K.
,
Sakes
,
A.
, and
Breedveld
,
P.
,
2021
, “
Design of Non-assembly Mechanisms: A State-of-the-Art Review
,”
Addit. Manuf.
,
39
, p.
101846
.
26.
Bruyas
,
A.
,
Geiskopf
,
F.
,
Meylheuc
,
L.
, and
Renaud
,
P.
,
2014
, “
Combining Multi-Material Rapid Prototyping and Pseudo-Rigid Body Modeling for a New Compliant Mechanism
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 5
, pp.
3390
3396
.
27.
Rommers
,
J.
,
van der Wijk
,
V.
, and
Herder
,
J. L.
,
2021
, “
A New Type of Spherical Flexure Joint Based on Tetrahedron Elements
,”
Precis. Eng.
,
71
, pp.
130
140
.
28.
Naves
,
M.
,
Nijenhuis
,
M.
,
Seinhorst
,
B.
,
Hakvoort
,
W.
, and
Brouwer
,
D.
,
2021
, “
T-flex: A Fully Flexure-Based Large Range of Motion Precision Hexapod
,”
Precis. Eng.
,
72
, pp.
912
928
.
29.
Kargar
,
S. M.
,
Parmiggiani
,
A.
,
Baggetta
,
M.
,
Ottonello
,
E.
,
Hao
,
G.
, and
Berselli
,
G.
,
2024
, “
Optimization of a Tetrahedron Compliant Spherical Joint Via Computer-Aided-Engineering Tools
,”
Int. J. Adv. Manuf. Technol.
,
132
, pp.
1151
1162
.
30.
Bilancia
,
P.
, and
Berselli
,
G.
,
2021
, “
An Overview of Procedures and Tools for Designing Nonstandard Beam-Based Compliant Mechanisms
,”
Comput.-Aid. Des.
,
134
, p.
103001
.
You do not currently have access to this content.