Abstract

The configuration space (c-space) of a mechanism is the real-solution variety of a set of loop closure constraints, which is therefore the chief object in kinematic analysis. Singularities of this variety (referred to as c-space singularities) are singular configurations of the mechanism. In addition, a mechanism may exhibit other kinematic singularities that are not visible from the differential geometry of the c-space (referred to as hidden singularities). Such situations were analyzed by investigating the local geometry of the c-space and its corank stratification. It has been shown recently that hidden singularities and shakiness can be attributed to the fact that complex solution branches intersect with the c-space, i.e., with real-solution branches. This paper employs the kinematic tangent cone to identify local solution branches. While the kinematic tangent cone is an established generally applicable concept, which gives rise to a computational (numeric and symbolic) algorithm, it has yet only been applied to analyzing the real-solution set. Application of the method is shown for several examples. Further, the algebraic aspects are briefly elaborated.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Gallardo-Alvarado
,
J.
, and
Rico-Martinez
,
J.
,
2001
, “
Jerk Influence Coefficients, Via Screw Theory, of Closed Chains
,”
Meccanica
,
36
, pp.
213
228
.
2.
de Bustos
,
I.
,
Aguirrebeitia
,
J.
,
Aviles
,
R.
, and
Ansola
,
R.
,
2012
, “
Second Order Mobility Analysis of Mechanisms Using Closure Equations
,”
Meccanica
,
47
(
7
), pp.
1695
1704
.
3.
Chen
,
C.
,
2011
, “
The Order of Local Mobility of Mechanisms
,”
Mech. Mach. Theory
,
46
(
9
), pp.
1251
1264
.
4.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages -Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
. doi.org/10.1115/1.4032778
5.
Müller
,
A.
,
2019
, “Local Investigation of Mobility and Singularities of Linkages,”
Singular Configurations of Mechanisms and Manipulators
(
CISM, 589
),
A.
Müller
, and
D.
Zlatanov
, eds.,
Springer
,
Cham
, pp.
181
229
.
6.
Arponen
,
T.
,
Piipponen
,
S.
, and
Tuomela
,
J.
,
2009
, “
Kinematic Analysis of Bricard’s Mechanism
,”
Nonlinear. Dyn.
,
56
, pp.
85
99
.
7.
Hegedüs
,
G.
,
Schicho
,
J.
, and
Schröcker
,
H.-P.
,
2012
, “Construction of Overconstrained Linkages by Factorization of Rational Motions,”
Latest Advances in Robot Kinematics 2012
,
J.
Lenarcic
, and
M.
Husty
, eds.,
Springer International Publishing
,
Cham
, pp.
213
220
.
8.
Kong
,
X.
, and
Pfurner
,
M.
,
2015
, “
Type Synthesis and Reconfiguration Analysis of a Class of Variable-DOF Single-Loop Mechanisms
,”
Mech. Mach. Theory
,
85
, pp.
116
128
.
9.
Pfurner
,
M.
, and
Kong
,
X.
,
2017
, “Algebraic Analysis of a New Variable-DOF 7R Mechanism,”
New Trends in Mechanism and Machine Science
,
P.
Wenger
and
P.
Flores
, eds.,
Springer
,
Cham
, pp.
71
79
.
10.
Kong
,
X.
,
2018
, “
A Variable-DOF Single-loop 7R Spatial Mechanism With Five Motion Modes
,”
Mech. Mach. Theory
,
120
, pp.
239
249
.
11.
Rameau
,
J.-F.
, and
Serre
,
P.
,
2015
, “
Computing Mobility Condition Using Groebner Basis
,”
Mech. Mach. Theory.
,
91
, pp.
21
38
.
12.
Zlatanov
,
D.
,
Bonev
,
I.
, and
Gosselin
,
C.
,
2002
, “Constraint Singularity as C-Space Singularities,”
On Advances in Robot Kinematics
(
Advances in Robot Kinematics: Theory and Application
),
J.
Lenarčič
, and
I.
Thomas
, eds.,
Kluwer Academic Publishers
,
Caldes de Malavella, Spain
, pp.
183
192
.
13.
Song
,
C.
, and
Chen
,
Y.
,
2012
, “
A Family of Mixed Double-Goldberg 6R Linkages
,”
Proc. R. Soc. A
,
468
(
2139
), pp.
871
890
.
14.
Li
,
Z.
, and
Müller
,
A.
,
2019
, “Mechanism Singularities Revisited From an Algebraic Viewpoint,”
43rd Mechanisms and Robotics Conference (MR)/ASME International Design Engineering Technical Conferences (IDETC)
,
Anaheim, CA
,
Aug. 18–21
,
ASME
. doi.org/10.1115/DETC2019-97742
15.
Li
,
Z.
, and
Müller
,
A.
,
2022
, “6R Linkages With Hidden Singularities,”
Advances in Robot Kinematics 2022
,
Altuzarra
,
O.
, and
Kecskeméthy
,
A.
, eds.,
Springer International Publishing
,
Cham
, pp.
81
89
.
16.
Waldron
,
K. J.
,
1968
, “
Hybrid Overconstrained Linkages
,”
J. Mech.
,
3
(
2
), pp.
73
78
.
17.
Müller
,
A.
,
2019
, “
An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains Wit Applications in Robotics and Mechanism Theory
,”
Mech. Mach. Theory
,
142
, p.
103594
.
18.
Müller
,
A.
,
López-Custodio
,
P.
, and
Dai
,
J. S.
,
2021
, “
Identification of Non-Transversal Motion Bifurcations of Linkages
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021015
.
19.
Müller
,
A.
,
2018
, “
Kinematic Topology and Constraints of Multi-loop Linkages
,”
Robotica
,
36
(
11
), pp.
1641
1663
.
20.
Selig
,
J.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
21.
Whitney
,
H.
,
1965
, “Local Properties of Analytic Varieties,”
Differential and Combinatorial Topology, A Symposium in Honor of M. Morse
,
Cairns
,
S. S.
, ed.,
Princeton University Press
,
Princeton, NJ
.
22.
Lerbet
,
J.
,
1999
, “
Analytic Geometry and Singularities of Mechanisms
,”
Z. Angew. Math. Mech. (ZAMM)
,
78
(
10b
), pp.
687
694
.
23.
Müller
,
A.
,
2018
, “
Higher-Order Analysis of Kinematic Singularities of Lower Pair Linkages and Serial Manipulators
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011008
.
24.
Müller
,
A.
,
2021
, “Wohlhart’s Three-Loop Mechanism: An Overconstrained and Shaky Linkage,”
Advances in Robot Kinematics 2020
(
Springer Proceedings in Advanced Robotics, Vol. 15
),
J.
Lenarčič
, and
S.
Bruno
, eds.,
Springer
,
Cham
, pp.
125
132
.
25.
Fayet
,
M.
,
1995
, “
Mécanismes Multi-boucles–i Détermination Des Espaces De Torseurs Cinématiques Dans Un Mécanisme Multi-Boucles Quelconque
,”
Mech. Mach. Theory
,
30
(
2
), pp.
201
217
.
26.
Wohlhart
,
K.
,
2004
, “Screw Spaces and Connectivities in Multiloop Linkages,”
On Advances in Robot Kinematics
,
Lenarčič
,
J.
, and
Galletti
,
C.
, eds.,
Springer Netherlands
, pp.
97
104
.
27.
Diez-Martínez
,
C. R.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
, and
Gallardo
,
J.
,
2006
, “Mobility and Connectivity in Multiloop Linkages,”
Advances in Robot Kinematics
,
J.
Lennarčič
,
B.
Roth
, eds.,
Springer Netherlands
, pp.
455
464
.
28.
Lopez-Custodio
,
P.
,
Müller
,
A.
,
Kang
,
X.
, and
Dai
,
J.
,
2020
, “
Tangential Intersection of Branches of Motion
,”
Mech. Mach. Theory
,
147
. doi.org/10.1016/j.mechmachtheory.2019.103730
29.
Kong
,
X.
, and
Müller
,
A.
,
2018
, “
A Single-Loop 7R Spatial Mechanism That Has Three Motion Modes With the Same Instantaneous DOF But Different Finite DOF
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 51814
,
American Society of Mechanical Engineers
, p.
V05BT07A070
.
You do not currently have access to this content.