Abstract

Soft tensegrity is a recent concept, which can be described as a prestressed assembly of soft cables in tension and bars in compression. In this paper, we investigate the impact of the bar behavior on the mechanical properties of a tensegrity. This is achieved through the change of bar material, from soft (e.g., silicone) to stiff (e.g., steel) materials. First, we show that it is possible to make a self-supporting tensegrity where both cables and bars are made of soft material. Second, we highlight that the bar material impacts the isotropy of the stiffness matrix of the tensegrity and the range of achievable stiffness. Lastly, we demonstrate that the bar material has a significant impact on the precision of stiffness variation, when active elements are integrated into the tensegrity. From these effects, we extract design guidelines for the choice of bar material in a soft tensegrity.

References

1.
Buckminster
,
F. R.
,
1962
, “Tensile-Integrity Structures,” U.S. Patent 3063521A, Nov.
2.
Snelson
,
K.
,
2012
, “
The Art of Tensegrity
,”
Int. J. Space Struct.
,
27
(
2–3
), pp.
71
80
.
3.
Skelton
,
R. E.
,
Fraternali
,
F.
,
Carpentieri
,
G.
, and
Micheletti
,
A.
,
2014
, “
Minimum Mass Design of Tensegrity Bridges With Parametric Architecture and Multiscale Complexity
,”
Mech. Res. Commun.
,
58
, pp.
124
132
.
4.
Vangelatos
,
Z.
,
Micheletti
,
A.
,
Grigoropoulos
,
C. P.
, and
Fraternali
,
F.
,
2020
, “
Design and Testing of Bistable Lattices With Tensegrity Architecture and Nanoscale Features Fabricated by Multiphoton Lithography
,”
Nanomaterials
,
10
(
4
), p.
652
.
5.
Oliveira
,
M. C.
, and
Skelton
,
R. E.
,
2009
,
Tensegrity Systems
,
Springer US
,
New York
.
6.
Arsenault
,
M.
, and
Gosselin
,
C.
,
2006
, “
Kinematic and Static Analysis of a Planar Modular 2-DoF Tensegrity Mechanism
,”
2006 IEEE International Conference on Robotics and Automation (ICRA)
,
Orlando, FL
,
May 15–19
, pp.
4193
4198
.
7.
Skelton
,
R. T.
, and
Sultan
,
C.
,
1997
, “
Controllable Tensegrity: A New Class of Smart Structures
,”
Smart Structures and Materials 1997: Mathematics and Control in Smart Structures
,
San Diego, CA
,
Mar. 3–6
, Vol. 3039, SPIE, pp.
166
177
.
8.
Oppenheim
,
I. J.
, and
Williams
,
W. O.
,
1997
, “
Tensegrity Prisms as Adaptive Structures
,”
1997 ASME International Mechanical Engineering Congress and Exposition (IMECE)
,
Dallas, TX
,
Nov. 16–21
, pp.
113
120
.
9.
Furet
,
M.
, and
Wenger
,
P.
,
2019
, “
Kinetostatic Analysis and Actuation Strategy of a Planar Tensegrity 2-X Manipulator
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
060904
.
10.
Abadi
,
B. N. R.
,
Farid
,
M.
, and
Mahzoon
,
M.
,
2014
, “
Introducing and Analyzing a Novel Three-Degree-of-Freedom Spatial Tensegrity Mechanism
,”
ASME J. Comput. Nonlinear Dyn.
,
9
(
2
), p.
021017
.
11.
Boehler
,
Q.
,
Abdelaziz
,
S.
,
Vedrines
,
M.
,
Poignet
,
P.
, and
Renaud
,
P.
,
2017
, “
From Modeling to Control of a Variable Stiffness Device Based on a Cable-Driven Tensegrity Mechanism
,”
Mech. Mach. Theory
,
107
, pp.
1
12
.
12.
Vespignani
,
M.
,
Friesen
,
J. M.
,
SunSpiral
,
V.
, and
Bruce
,
J.
,
2018
, “
Design of SUPERball V2, a Compliant Tensegrity Robot for Absorbing Large Impacts
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
2865
2871
.
13.
Zappetti
,
D.
,
Mintchev
,
S.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2017
, “
Bio-Inspired Tensegrity Soft Modular Robots
,”
2017 Springer Living Machines: Conference on Biomimetic and Biohybrid Systems
,
Stanford, CA
,
July 26–28
, pp.
497
508
.
14.
Lee
,
H.
,
Jang
,
Y.
,
Choe
,
J. K.
,
Lee
,
S.
,
Song
,
H.
,
Lee
,
J. P.
,
Lone
,
N.
, and
Kim
,
J.
,
2020
, “
3D-Printed Programmable Tensegrity for Soft Robotics
,”
Sci. Rob.
,
5
(
45
), p.
aay9024
.
15.
Zappetti
,
D.
,
Jeong
,
S. H.
,
Shintake
,
J.
, and
Floreano
,
D.
,
2020
, “
Phase Changing Materials-Based Variable-Stiffness Tensegrity Structures
,”
Soft Rob.
,
7
(
3
), pp.
362
369
.
16.
Graells Rovira
,
A.
, and
Mirats Tur
,
J. M.
,
2009
, “
Control and Simulation of a Tensegrity-Based Mobile Robot
,”
Rob. Auton. Syst.
,
57
(
5
), pp.
526
535
.
17.
Begey
,
J.
,
Vedrines
,
M.
,
Andreff
,
N.
, and
Renaud
,
P.
,
2020
, “
Selection of Actuation Mode for Tensegrity Mechanisms: The Case Study of the Actuated Snelson Cross
,”
Mech. Mach. Theory
,
152
, p.
103881
.
18.
Roth
,
J. K.
, and
McCarthy
,
T. J.
,
2021
, “
Optimizing Compressive Load Capacity for Differing Tensegrity Geometries
,”
Comput. Struct.
,
249
, p.
106523
.
19.
Zhang
,
P.
, and
Feng
,
J.
,
2017
, “
Initial Prestress Design and Optimization of Tensegrity Systems Based on Symmetry and Stiffness
,”
Int. J. Solids Struct.
,
106–107
(
Feb.
), pp.
68
90
.
20.
Yildiz
,
K.
, and
Lesieutre
,
G. A.
,
2019
, “
Effective Beam Stiffness Properties of N-Strut Cylindrical Tensegrity Towers
,”
AIAA J.
,
57
(
5
), pp.
2185
2194
.
21.
Connelly
,
R.
, and
Terrell
,
M.
,
1995
, “
Globally Rigid Symmetric Tensegrities
,”
Struct. Topol.
,
1
(
21
), pp.
59
77
.
22.
Tibert
,
A.
, and
Pellegrino
,
S.
,
2003
, “
Review of Form-Finding Methods for Tensegrity Structures
,”
Int. J. Space Struct.
,
18
(
4
), pp.
209
223
.
23.
Zhang
,
P.
,
Kawaguchi
,
K.
, and
Feng
,
J.
,
2014
, “
Prismatic Tensegrity Structures With Additional Cables: Integral Symmetric States of Self-stress and Cable-Controlled Reconfiguration Procedure
,”
Int. J. Solids Struct.
,
51
(
25
), pp.
4294
4306
.
24.
Skelton
,
R.
,
Adhikari
,
R.
,
Pinaud
,
J.-P.
,
Chan
,
W.
, and
Helton
,
J.
,
2001
, “
An Introduction to the Mechanics of Tensegrity Structures
,”
2001 IEEE Conference on Decision and Control (CDC)
,
Orlando, FL
,
Dec. 4–7
, Vol. 5, pp.
4254
4259
.
25.
Schek
,
H. J.
,
1974
, “
The Force Density Method for Form Finding and Computation of General Networks
,”
Comput. Methods Appl. Mech. Eng.
,
3
(
1
), pp.
115
134
.
26.
Boehler
,
Q.
,
Charpentier
,
I.
,
Vedrines
,
M. S.
, and
Renaud
,
P.
,
2015
, “
Definition and Computation of Tensegrity Mechanism Workspace
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
044502
.
27.
Calladine
,
C. R.
,
1978
, “
Buckminster Fuller’s ‘Tensegrity’ Structures and Clerk Maxwell’s Rules for the Construction of Stiff Frames
,”
Int. J. Solids Struct.
,
14
(
2
), pp.
161
172
.
28.
Guest
,
S.
,
2006
, “
The Stiffness of Prestressed Frameworks: A Unifying Approach
,”
Int. J. Solids Struct.
,
43
(
3
), pp.
842
854
.
29.
Guest
,
S. D.
,
2011
, “
The Stiffness of Tensegrity Structures
,”
IMA J. Appl. Math.
,
76
(
1
), pp.
57
66
.
30.
Pfeil
,
A.
,
Barbé
,
L.
,
Wach
,
B.
,
Bruyas
,
A.
,
Geiskopf
,
F.
,
Nierenberger
,
M.
, and
Renaud
,
P.
,
2018
, “
A 3D-Printed Needle Driver Based on Auxetic Structure and Inchworm Kinematics
,”
2018 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (IDETC-CIE)
,
Quebec City, Quebec, Canada
,
Aug. 26–29
,
p. V05AT07A057
.
You do not currently have access to this content.