Abstract

Forward kinematics-based modeling approaches are capable of constructing complete kinematic error models for parallel robots in a general way. The existing forward kinematics-based modeling methods replace multi-degrees-of-freedom (multi-DOF) joints with several 1DOF joints, allowing each limb of the parallel robot to be modeled like a serial robot. Nonetheless, this substitution complicates the kinematic model and results in additional computation. To overcome this limitation, an efficient kinematic calibration method adopting compact multi-DOF joint models is proposed. First, compact kinematic models for multi-DOF joints are established with the product of exponentials formula and adopted in the forward kinematic formulation of limbs. Error models of limbs are derived by simplifying the forward kinematic formulas' differentials, and the geometric error model for parallel robots is established by further concatenating and reformulating the limb error models. Next, the kinematic model is iteratively updated with the geometric parameter errors identified by the Levenberg–Marquardt algorithm. Error compensation is achieved through the inverse kinematics of the calibrated kinematic model. Finally, simulations and an experiment are implemented for validation. Compared with the existing forward kinematics-based modeling approaches, the error modeling procedures are simplified as the equivalent substitution of multi-DOF joints is avoided. The proposed approach also enhances the error compensation efficiency while maintaining high accuracy improvement.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Xie
,
F.
,
Liu
,
X.-J.
,
Wang
,
J.
, and
Wabner
,
M.
,
2017
, “
Kinematic Optimization of a Five Degrees-of-Freedom Spatial Parallel Mechanism With Large Orientational Workspace
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051005
.
2.
Xu
,
L.
,
Ye
,
W.
, and
Li
,
Q.
,
2022
, “
Design, Analysis, and Experiment of a New Parallel Manipulator With Two Rotational and One Translational Motion
,”
Mech. Mach. Theory
,
177
, p.
105064
.
3.
Shen
,
N.
,
Yuan
,
H.
,
Li
,
J.
,
Wang
,
Z.
,
Geng
,
L.
,
Shi
,
H.
, and
Lu
,
N.
,
2022
, “
Efficient Model-Free Calibration of a 5-Degree of Freedom Hybrid Robot
,”
ASME J. Mech. Rob.
,
14
(
5
), p.
051011
.
4.
Wu
,
H.
,
Kong
,
L.
,
Li
,
Q.
,
Wang
,
H.
, and
Chen
,
G.
,
2023
, “
A Comparative Study on Kinematic Calibration for a 3-DOF Parallel Manipulator Using the Complete-Minimal, Inverse-Kinematic and Geometric-Constraint Error Models
,”
Chin. J. Mech. Eng.
,
36
(
1
), p.
121
.
5.
Sun
,
T.
,
Lian
,
B.
,
Yang
,
S.
, and
Song
,
Y.
,
2020
, “
Kinematic Calibration of Serial and Parallel Robots Based on Finite and Instantaneous Screw Theory
,”
IEEE Trans. Rob.
,
36
(
3
), pp.
816
834
.
6.
Li
,
Z.
,
Li
,
S.
, and
Luo
,
X.
,
2021
, “
An Overview of Calibration Technology of Industrial Robots
,”
IEEE/CAA J. Autom. Sin.
,
8
(
1
), pp.
23
36
.
7.
Hayati
,
S.
, and
Mirmirani
,
M.
,
1985
, “
Improving the Absolute Positioning Accuracy of Robot Manipulators
,”
J. Robot. Syst.
,
2
(
4
), pp.
397
413
.
8.
Li
,
G.
,
Zhang
,
F.
,
Fu
,
Y.
, and
Wang
,
S.
,
2019
, “
Kinematic Calibration of Serial Robot Using Dual Quaternions
,”
Ind. Rob.
,
46
(
2
), pp.
247
258
.
9.
Okamura
,
K.
, and
Park
,
F. C.
,
1995
, “
Kinematic Calibration Using the Product of Exponentials Formula
,”
Robotica
,
14
(
4
), pp.
415
421
.
10.
Yang
,
X.
,
Wu
,
L.
,
Li
,
J.
, and
Chen
,
K.
,
2014
, “
A Minimal Kinematic Model for Serial Robot Calibration Using POE Formula
,”
Rob. Comput. Integr. Manuf.
,
30
(
3
), pp.
326
334
.
11.
Xiong
,
G.
,
Ding
,
Y.
,
Zhu
,
L.
, and
Su
,
C.-Y.
,
2017
, “
A Product-of-Exponential-Based Robot Calibration Method With Optimal Measurement Configurations
,”
Int. J. Adv. Rob. Syst.
,
14
(
6
), pp.
1
12
.
12.
He
,
R.
,
Zhao
,
Y.
,
Yang
,
S.
, and
Yang
,
S.
,
2010
, “
Kinematic-Parameter Identification for Serial-Robot Calibration Based on POE Formula
,”
IEEE Trans. Rob.
,
26
(
3
), pp.
411
423
.
13.
Li
,
C.
,
Wu
,
Y.
,
Lowe
,
H.
, and
Li
,
Z.
,
2016
, “
POE-Based Robot Kinematic Calibration Using Axis Configuration Space and the Adjoint Error Model
,”
IEEE Trans. Rob.
,
32
(
5
), pp.
1264
1279
.
14.
Chen
,
I. M.
,
Yang
,
G. L.
,
Tan
,
C. T.
, and
Yeo
,
S. H.
,
2001
, “
Local POE Model for Robot Kinematic Calibration
,”
Mech. Mach. Theory
,
36
(
11–12
), pp.
1215
1239
.
15.
Chen
,
G.
,
Wang
,
H.
, and
Lin
,
Z.
,
2014
, “
Determination of the Identifiable Parameters in Robot Calibration Based on the POE Formula
,”
IEEE Trans. Rob.
,
30
(
5
), pp.
1066
1077
.
16.
Hollerbach
,
J. M.
, and
Lokhorst
,
D. M.
,
1995
, “
Closed-Loop Kinematic Calibration of the RSI 6-DOF Hand Controller
,”
IEEE Trans. Rob. Autom.
,
11
(
3
), pp.
352
359
.
17.
Wang
,
L.-P.
,
Xie
,
F.-G.
,
Liu
,
X.-J.
, and
Wang
,
J.
,
2010
, “
Kinematic Calibration of the 3-DOF Parallel Module of a 5-Axis Hybrid Milling Machine
,”
Robotica
,
29
(
4
), pp.
535
546
.
18.
Huang
,
T.
,
Bai
,
P.
,
Mei
,
J.
, and
Chetwynd
,
D. G.
,
2016
, “
Tolerance Design and Kinematic Calibration of a Four-Degrees-of-Freedom Pick-and-Place Parallel Robot
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061018
.
19.
Wampler
,
C. W.
,
Hollerbach
,
J. M.
, and
Arai
,
T.
,
1995
, “
An Implicit Loop Method for Kinematic Calibration and Its Application to Closed-Chain Mechanisms
,”
IEEE Trans. Rob. Autom.
,
11
(
5
), pp.
710
724
.
20.
Zhuang
,
H.
,
Yan
,
J.
, and
Masory
,
O.
,
1998
, “
Calibration of Stewart Platform and Other Parallel Manipulators by Minimizing Inverse Kinematic Residuals
,”
J. Robot. Syst.
,
15
(
7
), pp.
395
405
.
21.
Huang
,
P.
,
Wang
,
J.
,
Wang
,
L.
, and
Yao
,
R.
,
2011
, “
Kinematical Calibration of a Hybrid Machine Tool With Regularization Method
,”
Int. J. Mach. Tools Manuf.
,
51
(
3
), pp.
210
220
.
22.
Hu
,
Y.
,
Gao
,
F.
,
Zhao
,
X.
,
Wei
,
B.
,
Zhao
,
D.
, and
Zhao
,
Y.
,
2018
, “
Kinematic Calibration of a 6-DOF Parallel Manipulator Based on Identifiable Parameters Separation (IPS)
,”
Mech. Mach. Theory
,
126
, pp.
61
78
.
23.
He
,
L.
,
Li
,
Q.
,
Zhu
,
X.
, and
Wu
,
C.
,
2019
, “
Kinematic Calibration of a Three Degrees-of-Freedom Parallel Manipulator With a Laser Tracker
,”
ASME J. Dyn. Syst. Meas. Control
,
141
(
3
), p.
031009
.
24.
Luo
,
X.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Xie
,
Z.
,
2021
, “
Kinematic Calibration of a 5-Axis Parallel Machining Robot Based on Dimensionless Error Mapping Matrix
,”
Rob. Comput. Integr. Manuf.
,
70
, p.
102115
.
25.
Maurine
,
P.
, and
Dombre
,
E.
,
1996
, “
A Calibration Procedure for the Parallel Robot Delta 4
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Minneapolis, MN
,
Apr. 22–28
, pp.
975
980
.
26.
Daney
,
D.
,
2003
, “
Kinematic Calibration of the Gough Platform
,”
Robotica
,
21
(
6
), pp.
677
690
.
27.
Everett
,
L. J.
,
1989
, “
Forward Calibration of Closed-Loop Jointed Manipulators
,”
Int. J. Rob. Res.
,
8
(
4
), pp.
85
91
.
28.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021013
.
29.
Chen
,
G.
,
Kong
,
L.
,
Li
,
Q.
,
Wang
,
H.
, and
Lin
,
Z.
,
2018
, “
Complete, Minimal and Continuous Error Models for the Kinematic Calibration of Parallel Manipulators Based on POE Formula
,”
Mech. Mach. Theory
,
121
, pp.
844
856
.
30.
Kong
,
L.
,
Chen
,
G.
,
Zhang
,
Z.
,
Xie
,
A.
,
Wang
,
H.
, and
Zhang
,
D.
,
2020
, “
Complete, Minimal and Continuous Kinematic Error Models of Perfect Multi-DOF Joints for Parallel Manipulators
,”
Proceedings of ASME Design Engineering Technical Conference
,
Virtual, Online
, p.
V010T010A023
.
31.
Ye
,
H.
,
Wu
,
J.
, and
Wang
,
D.
,
2022
, “
A General Approach for Geometric Error Modeling of Over-Constrained Hybrid Robot
,”
Mech. Mach. Theory
,
176
, p.
104998
.
32.
Zhou
,
W.
,
Chen
,
W.
,
Liu
,
H.
, and
Li
,
X.
,
2015
, “
A New Forward Kinematic Algorithm for a General Stewart Platform
,”
Mech. Mach. Theory
,
87
, pp.
177
190
.
33.
Luo
,
J.
,
Chen
,
S.
,
Zhang
,
C.
,
Chen
,
C.-Y.
, and
Yang
,
G.
,
2023
, “
Efficient Kinematic Calibration for Articulated Robot Based on Unit Dual Quaternion
,”
IEEE Trans. Ind. Inf.
,
19
(
12
), pp.
11898
11909
.
34.
Murray
,
R. M.
,
Sastry
,
S. S.
, and
Li
,
Z. X.
,
1994
,
A Mathematical Introduction to Robotic Manipulation
,
CRC Press
,
Boca Raton, FL
.
35.
Yu
,
Y.
,
Narita
,
Y.
,
Harada
,
Y.
, and
Nakao
,
T.
,
2009
, “
Research of 3-DOF Active Rotational Ball Joint
,”
Proceedings of 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
St. Louis, MO
,
Oct. 10-15
, pp.
5153
5158
.
36.
Shah
,
S. V.
,
Saha
,
S. K.
, and
Dutt
,
J. K.
,
2012
, “
Denavit-Hartenberg Parameterization of Euler Angles
,”
ASME J. Comput. Nonlinear Dyn.
,
7
(
2
), p.
021006
.
37.
Kim
,
J.
,
Lee
,
S.-H.
, and
Park
,
F. C.
,
2013
, “
Kinematic and Dynamic Modeling of Spherical Joints Using Exponential Coordinates
,”
Proc. Inst. Mech. Eng. Part C J. Mech. Eng. Sci.
,
228
(
10
), pp.
1777
1785
.
38.
Kong
,
L.
,
Chen
,
G.
,
Huang
,
G.
,
Song
,
S.
,
Xie
,
A.
, and
Zhang
,
D.
,
2021
, “
A Comprehensive Numerical Study on the Number of Identifiable Kinematic Parameters of Parallel Mechanisms
,”
Proceedings of ASME Design Engineering Technical Conference
,
Virtual, Online
, p.
V08AT08A034
.
39.
Wang
,
J.
, and
Masory
,
O.
,
1993
, “
On the Accuracy of a Stewart Platform. I. The Effect of Manufacturing Tolerances
,”
Proceedings of IEEE International Conference on Robotics and Automation
,
Atlanta, GA
,
May 2–6
, pp.
114
120
.
40.
Fichter
,
E. F.
,
1986
, “
A Stewart Platform- Based Manipulator: General Theory and Practical Construction
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
157
182
.
41.
Chong
,
Z.
,
Xie
,
F.
,
Liu
,
X.-J.
,
Wang
,
J.
, and
Niu
,
H.
,
2020
, “
Design of the Parallel Mechanism for a Hybrid Mobile Robot in Wind Turbine Blades Polishing
,”
Rob. Comput. Integr. Manuf.
,
61
, pp.
101857
.
42.
Shi
,
Z.
,
Zhang
,
W.
, and
Ding
,
Y.
,
2023
, “
A Local Toolpath Smoothing Method for a Five-Axis Hybrid Machining Robot
,”
Sci. China: Technol. Sci.
,
66
(
3
), pp.
721
742
.
43.
Chen
,
J.
,
Xie
,
F.
,
Liu
,
X.-J.
, and
Chong
,
Z.
,
2023
, “
Elasto-Geometrical Calibration of a Hybrid Mobile Robot Considering Gravity Deformation and Stiffness Parameter Errors
,”
Rob. Comput. Integr. Manuf.
,
79
, pp.
102437
.
You do not currently have access to this content.