Abstract

When performing microlaryngoscopic surgery, surgeons must maintain their arm positions for a long time, which can cause arm soreness and affect the success rate of surgery. In this study, a novel tendon-sheath-driven upper limb exoskeleton with elastic joints (TULEE) is proposed and developed to support the arms of doctors wearing the TULEE. The functional requirements of the TULEE were proposed according to the needs of microlaryngoscopic surgery, and the overall structure of the TULEE was designed. Then, the positive kinematics of the TULEE were derived based on the D–H transformation matrices, and the accuracy of the positive kinematic control was verified experimentally. The reachable workspace of the wrist joint of the TULEE was analyzed, and the dexterous workspace of the wrist was analyzed by using the condition number of the Jacobian matrix. The control strategy of the TULEE was proposed based on the principle of admittance control. Finally, an experimental prototype of the TULEE was built, and the feasibility of the control strategy was verified by a servo control experiment testing a single joint and a combined control experiment testing multiple joints. Through simulated surgical experiments, it was verified that TULEE can follow the wearer's arm movement, provide assistance for the wearer's arm movement in the following control mode, and lock the joint rotation angle in the steady-state control mode to reduce external disturbances and reduce the risk of unsuccessful surgery.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Ayako
,
O.
,
Ujimoto
,
K.
, and
Yusuke
,
W.
,
2019
, “
Complaints and Complications of Microlaryngoscopic Surgery
,”
J. Voice
,
34
(
6
), pp.
949
955
.
2.
Arad-Cohen
,
A.
, and
Blitzer
,
A.
,
1998
, “
Office-Based Direct Fiberoptic Laryngoscopic Surgery
,”
Oper. Techn. Otolaryngol. Head Neck Surg.
,
9
(
4
), pp.
238
242
.
3.
Joshi
,
A. A.
,
Velecharla
,
M. S.
,
Patel
,
T. S.
,
Shah
,
K. D.
, and
Bradoo
,
R. A.
,
2019
, “
Management of Difficult Laryngeal Exposure During Suspension Microlaryngoscopy
,”
Indian J. Otolaryngol. Head Neck Surg.
,
71
(
1
), pp.
81
85
.
4.
Lindemann
,
T. L.
,
Kamrava
,
B.
,
Sarcu
,
D.
, and
Soliman
,
A. M. S.
,
2020
, “
Tongue Symptoms, Suspension Force and Duration During Operative Laryngoscopy
,”
Am. J. Otolaryngol.
,
41
(
3
), p.
102402
.
5.
Türkay
,
M.
,
Şentürk
,
T.
,
Arslan
,
B. Y.
,
Yeter
,
H.
,
Sevdi
,
M. S.
,
Aydın
,
S.
,
Gergin
,
I.
, and
Erkalp
,
K.
,
2016
, “
Indirect Laryngoscopic Assessment for the Diagnosis of Difficult Intubation in Patients Undergoing Microlaryngeal Surgery
,”
Wiener Medizinische Wochenschrift
,
166
(
1–2
), pp.
62
67
.
6.
Fang
,
R.
,
Chen
,
H.
, and
Sun
,
J.
,
2012
, “
Analysis of Pressure Applied During Microlaryngoscopy
,”
Eur. Arch. Oto—Rhino—Laryngol.
,
269
(
5
), pp.
1471
1476
.
7.
Bilancia
,
B.
, and
Berselli
,
G.
,
2021
, “
Conceptual Design and Virtual Prototyping of a Wearable Upper Limb Exoskeleton for Assisted Operations
,”
Int. J. Interact. Des. Manuf.
,
15
(
4
), pp.
525
539
.
8.
Lee
,
M.
, and
Sulica
,
L.
,
2020
, “
Recurrence of Benign Phonotraumatic Vocal Fold Lesions After Microlaryngoscopy
,”
Laryngoscope
,
130
(
8
), pp.
1989
1995
.
9.
Mesolella
,
M.
,
Allosso
,
S.
,
Mansueto
,
G.
,
Fuggi
,
M.
, and
Motta
,
G.
,
2022
, “
Strategies and Controversies in the Treatment With Carbon Dioxide Laser of Laryngeal Hemangioma: A Case Series and Review of the Literature
,”
Ear Nose Throat J.
,
101
(
5
), pp.
326
331
.
10.
Purnell
,
P. R.
,
Haught
,
E.
, and
Turner
,
M. T.
,
2022
, “
Minimally Invasive Treatment of Laryngoceles: A Systematic Review and Pooled Analysis
,”
J. Rob. Surg.
,
16
(
1
), pp.
1
14
.
11.
Yang
,
L.
,
Wang
,
T.
,
Weidner
,
T. K.
,
Madura
,
J. A.
,
Morrow
,
M. M.
, and
Hallbeck
,
M. S.
,
2021
, “
Intraoperative Musculoskeletal Discomfort and Risk for Surgeons During Open and Laparoscopic Surgery
,”
Surg. Endosc.
,
35
(
11
), pp.
6335
6343
.
12.
Chandra
,
S.
,
Hayashibe
,
M.
, and
Thondiyath
,
A.
,
2020
, “
Muscle Fatigue Induced Hand Tremor Clustering in Dynamic Laparoscopic Manipulation
,”
IEEE Trans. Syst. Man Cybernet. Syst.
,
50
(
12
), pp.
5420
5431
.
13.
Slack
,
P. S.
,
Coulson
,
C. J.
,
Ma
,
X.
,
Webster
,
K.
, and
Proops
,
D. W.
,
2008
, “
The Effect of Operating Time on Surgeons’ Muscular Fatigue
,”
Ann. R. College Surg. Engl.
,
90
(
8
), pp.
651
657
.
14.
Manna
,
S. K.
, and
Dubey
,
V. N.
,
2019
, “
A Portable Elbow Exoskeleton for Three Stages of Rehabilitation
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
065002
.
15.
Christensen
,
S.
, and
Bai
,
S.
,
2018
, “
Kinematic Analysis and Design of a Novel Shoulder Exoskeleton Using a Double Parallelogram Linkage
,”
ASME J. Mech. Rob.
,
10
(
4
), p.
041008
.
16.
Hwiwon
,
S.
, and
Sangyoon
,
L.
,
2017
, “
Design and Experiments of an Upper-Limb Exoskeleton Robot
,”
International Conference on Ubiquitous Robots and Ambient Intelligence
,
Jeju Island, Korea
,
June 28–July 1
, pp.
807
808
.
17.
Hunt
,
J.
,
Lee
,
H.
, and
Artemiadis
,
P.
,
2017
, “
A Novel Shoulder Exoskeleton Robot Using Parallel Actuation and a Passive Slip Interface
,”
ASME J. Mech. Rob.
,
9
(
1
), p.
011002
.
18.
Mukund
,
K.
, and
Subramaniam
,
S.
,
2020
, “
Skeletal Muscle: A Review of Molecular Structure and Function, in Health and Disease
,”
Wiley Interdiscipl. Rev.: Syst. Biol. Med.
,
12
(
1
), p.
e1462
.
19.
Hill
,
A. V.
,
1938
, “
The Heat of Shortening and the Dynamic Constants of Muscle
,”
Proc. R. Soc. Lond. Ser. B Biol. Sci.
,
126
(
843
), pp.
136
195
.
20.
Wang, Lee
,
K.-M.
,
Guo
,
J.
, and
Yang
,
C.-J.
,
2014
, “
Adaptive Knee Joint Exoskeleton Based on Biological Geometries
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1268
1278
.
21.
Samper-Escudero
,
J. L.
,
Giménez-Fernandez
,
A.
,
Sánchez-Urán
,
M. Á.
, and
Ferre
,
M.
,
2020
, “
A Cable-Driven Exosuit for Upper Limb Flexion Based on Fibres Compliance
,”
IEEE Access
,
8
, pp.
153297
153310
.
22.
Cappello
,
L.
,
Binh
,
D. K.
,
Yen
,
S.-C.
, and
Masia
,
L.
,
2016
, “
Design and Preliminary Characterization of a Soft Wearable Exoskeleton for Upper Limb
,”
2016 6th IEEE International Conference on Biomedical Robotics and Biomechatronics (BioRob)
,
Singapore
,
June 26–29
, pp.
623
630
.
23.
Dinh
,
B. K.
,
Xiloyannis
,
M.
,
Cappello
,
L.
,
Antuvan
,
C. W.
,
Yen
,
S. C.
, and
Masia
,
L.
,
2017
, “
Adaptive Backlash Compensation in Upper Limb Soft Wearable Exoskeletons
,”
Rob. Auton. Syst.
,
92
, pp.
173
186
.
24.
Asbeck
,
A. T.
,
De Rossi
,
S. M. M.
,
Holt
,
K. G.
, and
Walsh
,
C. J.
,
2015
, “
A Biologically Inspired Soft Exosuit for Walking Assistance
,”
Int. J. Rob. Res.
,
34
(
6
), pp.
744
762
.
25.
Asbeck
,
A. T.
,
Schmidt
,
K.
,
Galiana
,
I.
,
Wagner
,
D.
, and
Walsh
,
C. J.
,
2015
, “
Multi-joint Soft Exosuit for Gait Assistance
,”
2015 IEEE International Conference on Robotics and Automation
,
Seattle, WA
,
May 26–30
, pp.
6197
6204
.
26.
Ji
,
Y.
,
Chen
,
W.
,
Zhang
,
J.
,
Li
,
Z.
,
Fang
,
Z.
, and
Yang
,
G.
,
2022
, “
Self-Identification of Cable-Driven Exoskeleton Based on Asynchronous Iterative Method
,”
ASME J. Mech. Rob.
,
14
(
2
), p.
021013
.
27.
Maciejasz
,
P.
,
Eschweiler
,
J.
,
Gerlach-Hahn
,
K.
,
Jansen-Troy
,
A.
, and
Leonhardt
,
S.
,
2014
, “
A Survey on Robotic Devices for Upper Limb Rehabilitation
,”
J. NeuroEng. Rehabil.
,
11
(
1
), p.
3
.
28.
Niyetkaliyev
,
A. S.
,
Sariyildiz
,
E.
, and
Alici
,
G.
,
2021
, “
Kinematic Modeling and Analysis of a Novel Bio-Inspired and Cable-Driven Hybrid Shoulder Mechanism
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011008
.
29.
Xu
,
P.
,
Li
,
J.
,
Li
,
S.
,
Xia
,
D.
,
Zeng
,
Z.
,
Yang
,
N.
, and
Xie
,
L.
,
2022
, “
Design and Evaluation of a Parallel Cable-Driven Shoulder Mechanism With Series Springs
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031012
.
30.
Zhang
,
J.
,
Kan
,
Z.
,
Li
,
Y.
,
Wu
,
Z.
,
Wu
,
J.
, and
Peng
,
H.
,
2022
, “
Novel Design of a Cable-Driven Continuum Robot With Multiple Motion Patterns
,”
IEEE Rob. Autom. Lett.
,
7
(
3
), pp.
6163
6170
.
31.
Liu
,
Z.
,
Cai
,
Z.
,
Peng
,
H.
,
Zhang
,
X.
, and
Wu
,
Z.
,
2023
, “
Morphology and Tension Perception of Cable-Driven Continuum Robots
,”
IEEE/ASME Trans. Mechatron.
,
28
(
1
), pp.
314
325
.
32.
Kan
,
Z.
,
peng
,
H.
,
Chen
,
B.
, and
Zhong
,
W.
,
2018
, “
A Sliding Cable Element of Multibody Dynamics With Application to Nonlinear Dynamic Deployment Analysis of Clustered Tensegrity
,”
Int. J. Solids Struct.
,
130
, pp.
61
79
.
33.
Su
,
H.
,
Hu
,
Y.
,
Karimi
,
H. R.
,
Knoll
,
A.
,
Ferrigno
,
G.
, and
De Momi
,
E.
,
2020
, “
Improved Recurrent Neural Network-Based Manipulator Control With Remote Center of Motion Constraints: Experimental Results
,”
Neural Netw.
,
131
, pp.
291
299
.
34.
Su
,
H.
,
Qi
,
W.
,
Schmirander
,
Y.
,
Ovur
,
S. E.
,
Cai
,
S.
, and
Xiong
,
X.
,
2022
, “
A Human Activity-Aware Shared Control Solution for Medical Human–Robot Interaction
,”
Assem. Autom.
,
42
(
3
), pp.
388
394
.
35.
Sefati
,
S.
,
Gao
,
C.
,
Iordachita
,
I.
,
Taylor
,
R. H.
, and
Armand
,
M.
,
2020
, “
Data-Driven Shape Sensing of a Surgical Continuum Manipulator Using an Uncalibrated Fiber Bragg Grating Sensor
,”
IEEE Sens. J.
,
21
(
3
), pp.
3066
3076
.
36.
Salisbury
,
J. K.
, and
Craig
,
J. J.
,
1982
, “
Articulated Hands: Force Control and Kinematic Issues
,”
Int. J. Rob. Res.
,
1
(
1
), pp.
4
17
.
37.
Khadem
,
M.
,
Da Cruz
,
L.
, and
Bergeles
,
C.
,
2018
, “
Force/Velocity Manipulability Analysis for 3D Continuum Robots
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5
, pp.
4920
4926
.
You do not currently have access to this content.