Abstract

Hand–eye calibration is a typical research direction in robotics applications. The current methods can be divided into two categories according to whether the rotational and translational equations are decoupled for computation: two-step methods and one-step methods. Both one-step and two-step methods generally convert such problems to linear null space computations, which are implemented by the corresponding computational operators. Owing to the booming development of the rotation operators, the two-step methods have been more fully researched. However, due to the limitations of the research on computational operators integrating rotation and translation, the one-step methods still have much scope for research. Dual algebra, as effective mathematical entities for screws and wrenches, provides the theoretical basis for the development of the one-step methods for hand–eye calibration. In this paper, a computational operator for the dual matrices computation was first proposed, i.e., dual Kronecker product. Subsequently, a hand–eye calibration framework was proposed based on the dual Kronecker product, which allowed the screw motion to be represented as multiple dual vectors. Furthermore, the equivalence of this framework with the orthogonal-dual-tensor-based approach was derived, providing a more intuitive computational representation. The feasibility and superiority of the proposed computational framework were experimentally verified.

Graphical Abstract Figure
Graphical Abstract Figure
Close modal

References

1.
Zhuang
,
H.
,
Roth
,
Z. S.
, and
Sudhakar
,
R.
,
1994
, “
Simultaneous Robot/World and Tool/Flange Calibration by Solving Homogeneous Transformation Equations of the Form AX=YB
,”
IEEE Trans. Robot. Autom.
,
10
(
4
), pp.
549
554
.
2.
Shiu
,
Y. C.
, and
Ahmad
,
S.
,
1989
, “
Calibration of Wrist-Mounted Robotic Sensors by Solving Homogeneous Transform Equations of the Form AX=XB
,”
IEEE Trans. Robot. Autom.
,
5
(
1
), pp.
16
29
.
3.
Tsai
,
R. Y.
, and
Lenz
,
R. K.
,
1989
, “
A New Technique for Fully Autonomous and Efficient 3D Robotics Hand/Eye Calibration
,”
IEEE Trans. Robot. Autom.
,
5
(
3
), pp.
345
358
.
4.
Daniilidis
,
K.
,
1998
, “
Hand-Eye Calibration Using Dual Quaternions
,”
Int. J. Rob. Res.
,
18
(
3
), pp.
286
298
.
5.
Li
,
A.
,
Wang
,
L.
, and
Wu
,
D.
,
2010
, “
Simultaneous Robot-World and Hand-Eye Calibration Using Dual-Quaternions and Kronecker Product
,”
Int. J. Phys. Sci.
,
5
(
10
), pp.
1530
1536
.
6.
Wang
,
X.
, and
Song
,
H.
,
2022
, “
Optimal Robot-World and Hand-Eye Calibration With Rotation and Translation Coupling
,”
Robotica
,
40
(
9
), pp.
2953
2968
.
7.
Park
,
F. C.
, and
Martin
,
B. J.
,
1994
, “
Robot Sensor Calibration: Solving AX = XB on the Euclidean Group
,”
IEEE Trans. Robot. Autom.
,
10
(
5
), pp.
717
721
.
8.
Andreff
,
N.
,
Horaud
,
R.
, and
Espiau
,
B.
,
2001
, “
Robot Hand-Eye Calibration Using Structure-From-Motion
,”
Int. J. Robot. Res.
,
20
(
3
), pp.
228
248
.
9.
Shah
,
M.
,
2013
, “
Solving the Robot-World/Hand-Eye Calibration Problem Using the Kronecker Product
,”
ASME J. Mech. Rob.
,
5
(
3
), p.
031007
.
10.
Wang
,
X.
,
Huang
,
J.
, and
Song
,
H.
,
2021
, “
Simultaneous Robot-World and Hand-Eye Calibration Based on a Pair of Dual Equations
,”
Measurement
,
181
, p.
109623
.
11.
Chen
,
H. H.
,
1991
, “
A Screw Motion Approach to Uniqueness Analysis of Head-Eye Geometry
,”
Proceedings. 1991 IEEE Computer Society Conference on Computer Vision and Pattern Recognition
,
Maui, HI
,
June 3–6
, pp.
145
151
.
12.
Murray
,
R.
,
Li
,
Z.
, and
Sastry
,
S.
,
1994
,
A Mathematical Introduction to Robotics Manipulation
,
CRC Press
,
Boca Raton, FL
.
13.
Condurache
,
D.
,
2021
, “
Dual Lie Algebra Representations of Rigid Body Dispacement and Motion. An Overview(I)
,” 2021 AAS/AIAA Astrodynamics Specialist Conference, Aug. 9–11,
Big Sky – Virtual
, pp.
AAS 21–627
.
14.
Pennestri
,
E.
, and
Valentini
,
P. P.
,
2009
,
Linear Dual Algebra Algorithms and Their Application to Kinematics
,
Multibody Dynamics
, 1st ed.,
Springer Dordrecht
, pp.
207
229
.
15.
Tabb
,
A.
, and
Ahmad Yousef
,
K. M.
,
2017
, “
Solving the Robot-World Hand-Eye(s) Calibration Problem With Iterative Methods
,”
Mach. Vis. Appl.
,
28
, pp.
569
590
.
16.
Chou
,
J. C. K.
, and
Kamel
,
M.
,
1991
, “
Finding the Position and Orientation of a Sensor on a Robot Manipulator Using Quaternions
,”
Int. J. Robot. Res.
,
10
(
3
), pp.
240
254
.
17.
Sarabandi
,
S.
,
Porta
,
J. M.
, and
Thomas
,
F.
,
2022
, “
Hand-Eye Calibration Made Easy Through a Closed-Form Two-Stage Method
,”
IEEE Robot. Autom. Lett.
,
7
(
2
), pp.
3679
3686
.
18.
Wu
,
L.
, and
Ren
,
H.
,
2017
, “
Finding the Kinematic Base Frame of a Robot by Hand-Eye Calibration Using 3D Position Data
,”
IEEE Trans. Autom. Sci. Eng.
,
14
(
1
), pp.
314
324
.
19.
Wu
,
L.
,
Wang
,
J.
,
Qi
,
L.
,
Wu
,
K.
,
Ren
,
H.
, and
Meng
,
M. Q.-H.
,
2016
, “
Simultaneous Hand-Eye, Tool-Flange, and Robot-Robot Calibration for Comanipulation by Solving the AXB = YCZ Problem
,”
IEEE Robot. Autom. Lett.
,
32
(
2
), pp.
413
428
.
20.
Bauchau
,
O. A.
, and
Trainelli
,
L.
,
2003
, “
The Vectorial Parameterization of Rotation
,”
Nonlinear Dyn.
,
32
, pp.
71
92
.
21.
Barfoot
,
T.
,
Forbes
,
J. R.
, and
D’Eleuterio
,
G.
,
2021
, “
Vectorial Parameterizations of Pose
,”
Robotica
,
40
(
7
), pp.
2409
2427
.
22.
Pachtrachai
,
K.
,
Vasconcelos
,
F.
,
Chadebecq
,
F.
,
Allan
,
M.
,
Hailes
,
S.
,
Pawar
,
V.
, and
Stoyanov
,
D.
,
2018
, “
Adjoint Transformation Algorithm for Hand-Eye Calibration With Applications in Robotic Sssisted Surgery
,”
Ann. Biomed. Eng.
,
46
, pp.
1606
1620
.
23.
Wang
,
X.
,
Zhou
,
K.
,
Yang
,
J.
, and
Song
,
H.
,
2022
, “
Robot-World and Hand-Eye Calibration Based on Motion Tensor With Applications in Uncalibrated Robot
,”
Measurement
,
204
, p.
112076
.
24.
Wang
,
X.
,
Huang
,
J.
, and
Song
,
H.
,
2023
, “
Robot-World and Hand-Eye Calibration Based on Quaternion: A New Method and an Extension of Classic Methods, With Their Comparisons
,”
Mech. Mach. Theory
,
179
, p.
105127
.
25.
Schmidt
,
J.
,
Vogt
,
F.
, and
Niemann
,
H.
,
2003
, “
Robust Hand-Eye Calibration of an Endoscopic Surgery Robot Using Dual Quaternions
,”
Pattern Recognition, 25th DAGM Symposium
,
Magdeburg, Germany
,
Sept. 10–12
, pp.
548
556
.
26.
Ulrich
,
M.
, and
Steger
,
C.
,
2016
, “
Hand-Eye Calibration of SCARA Robots Using Dual Quaternions
,”
Patt. Recogn. Image Anal.
,
26
(
Jan.
), pp.
231
239
.
27.
Malti
,
A.
, and
Barreto
,
J. P.
,
2010
, “
Robust Hand-Eye Calibration for Computer Aided Medical Endoscopy
,”
2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, pp.
5543
5549
.
28.
Horaud
,
R.
, and
Dornaika
,
F.
,
1995
, “
Hand-Eye Calibration
,”
Int. J. Rob. Res.
,
14
(
3
), pp.
195
210
.
29.
Clifford
,
W. K.
,
1871
, “
Preliminary Sketch of Biquaternions
,”
Proc. Lond. Math. Soc.
,
1–4
(
1
), pp.
381
395
.
30.
Study
,
E.
,
1891
, “
Von Den Bewegungen Und Umlegungen
,”
Math. Ann.
,
39
, pp.
441
565
.
31.
McCarthy
,
J. M.
,
1986
, “
Dual Orthogonal Matrices in Manipulator Kinematics
,”
Int. J. Rob. Res.
,
5
(
2
), pp.
45
51
.
32.
Gu
,
Y. L.
, and
Luh
,
J.
,
1987
, “
Dual-Number Transformation and Its Applications to Robotics
,”
IEEE Trans. Robot. Autom.
,
3
(
6
), pp.
615
623
. 0.1109/JRA.1987.1087138
33.
Pradeep
,
A. K.
,
Yoder
,
P. J.
, and
Mukundan
,
R.
,
1989
, “
On the Use of Dual-Matrix Exponentials in Robotic Kinematics
,”
Int. J. Rob. Res.
,
8
(
5
), pp.
57
66
.
34.
Funda
,
J.
, and
Paul
,
R. P.
,
1990
, “
A Computational Analysis of Screw Transformations in Robotics
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
348
356
.
35.
Cohen
,
A.
, and
Shoham
,
M.
,
2016
, “
Application of Hyper-Dual Numbers to Multibody Kinematics
,”
ASME J. Mech. Rob.
,
8
(
1
), p.
011015
.
36.
Condurache
,
D.
, and
Burlacu
,
A.
,
2014
, “
Dual Tensors Based Solutions for Rigid Body Motion Parameterization
,”
Mech. Mach. Theory
,
74
, pp.
390
412
.
37.
Condurache
,
D.
, and
Burlacu
,
A.
,
2016
, “
Orthogonal Dual Tensor Method for Solving the AX=XB Sensor Calibration Problem
,”
Mech. Mach. Theory
,
104
, pp.
382
404
.
38.
Neudecker
,
H.
,
1969
, “
Some Theorems on Matrix Differentiation With Special Reference to Kronecker Matrix Products
,”
J. Am. Stat. Assoc.
,
64
(
327
), pp.
953
963
.
39.
Brewer
,
J.
,
1978
, “
Kronecker Products and Matrix Calculus in System Theory
,”
IEEE Trans. Circuits Syst.
,
25
(
9
), pp.
772
781
.
40.
Deif
,
A. S.
,
Seif
,
N. P.
, and
Hussein
,
S. A.
,
1995
, “
Sylvester’s Equation: Accuracy and Computational Stability
,”
J. Comput. Appl. Math.
,
61
(
1
), pp.
1
11
.
41.
Bouguet
,
J. Y.
,
2003
, Camera Calibration Toolbox for MATLAB.
42.
Zhang
,
Z.
,
2000
, “
A Flexible New Technique for Camera Calibration
,”
IEEE Trans. Patt. Anal. Mach. Intell.
,
22
(
11
), pp.
1330
1334
.
43.
Denavit
,
J.
, and
Hartenberg
,
R. S.
,
1955
, “
A Kinematic Notation for Lower-Pair Mechanisms Based on Matrices
,”
ASME J. Appl. Mech.
,
22
(
2
), pp.
215
221
.
You do not currently have access to this content.