Abstract

This work tackles practical issues that arise when using a tendon-driven robotic manipulator (TDRM) with a long, flexible, passive proximal section in medical applications. Tendon-driven devices are preferred in medicine for their improved outcomes via minimally invasive procedures, but TDRMs come with unique challenges such as sterilization and reuse, simultaneous control of tendons, hysteresis in the tendon-sheath mechanism, and unmodeled effects of the proximal section shape. A separable TDRM that overcomes difficulties in actuation and sterilization is introduced, in which the body containing the electronics is reusable and the remainder is disposable. An open-loop redundant controller that resolves the redundancy in the kinematics is developed. Simple linear hysteresis compensation and re-tension compensation based on the physical properties of the device are proposed. The controller and compensation methods are evaluated on a testbed for a straight proximal section, a curved proximal section at various static angles, and a proximal section, which dynamically changes angles, and overall, distal tip error was reduced.

References

1.
Stereotaxis
,
2020
, “
Stereotaxis V-Drive Robotic Navigation System
,” http://www.stereotaxis.com/products/vdrive, Accessed October 27, 2022.
2.
Kim
,
Y.-H.
,
Collins
,
J.
,
Li
,
Z.
,
Chinnadurai
,
P.
,
Kapoor
,
A.
,
Lin
,
C. H.
, and
Mansi
,
T.
,
2022
, “
Automated Catheter Tip Repositioning for Intra-cardiac Echocardiography
,”
Int. J. Comput. Assist. Radiol. Surg.
,
17
, pp.
1409
1417
.
3.
Reddy
,
V. Y.
,
Neuzil
,
P.
,
Malchano
,
Z. J.
,
Vijaykumar
,
R.
,
Cury
,
R.
,
Abbara
,
S.
,
Weichet
,
J.
,
McPherson
,
C. D.
, and
Ruskin
,
J. N.
,
2007
, “
View-Synchronized Robotic Image-Guided Therapy for Atrial Fibrillation Ablation
,”
Circulation
,
115
(
21
), pp.
2705
2714
.
4.
Agrawal
,
A.
,
Hogarth
,
D. K.
, and
Murgu
,
S.
,
2020
, “
Robotic Bronchoscopy for Pulmonary Lesions: A Review of Existing Technologies and Clinical Data
,”
J. Thorac. Dis.
,
12
(
6
), pp.
3279
3286
.
5.
Intuitive Surgical
,
2022
, “
Ion Platform—Robotic-Assisted Bronchoscopy
,” https://www.intuitive.com/en-us/products-and-services/ion, Accessed October 27, 2022.
6.
Johnson & Johnson
,
2022
, “
Monarch Platform
,” https://www.jnjmedtech.com/en-US/product/monarch-bronchoscopy, Accessed October 27, 2022.
7.
Dupont
,
P. E.
,
Simaan
,
N.
,
Choset
,
H.
, and
Rucker
,
C.
,
2022
, “
Continuum Robots for Medical Interventions
,”
Proc. IEEE
,
110
(
7
), pp.
847
870
.
8.
Zhang
,
T.
,
Ping
,
Z.
, and
Zuo
,
S.
,
2021
, “
Miniature Continuum Manipulator With Three Degrees-of-Freedom Force Sensing for Retinal Microsurgery
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
041002
.
9.
Cao
,
Y.
,
Feng
,
F.
,
Liu
,
Z.
, and
Xie
,
L.
,
2022
, “
Closed-Loop Trajectory Tracking Control of a Cable-Driven Continuum Robot With Integrated Draw Tower Grating Sensor Feedback
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
061004
.
10.
Lee
,
D.-H.
,
Kim
,
Y.-H.
,
Collins
,
J.
,
Kapoor
,
A.
,
Kwon
,
D.-S.
, and
Mansi
,
T.
,
2021
, “
Non-linear Hysteresis Compensation of a Tendon-Sheath-Driven Robotic Manipulator Using Motor Current
,”
IEEE Robot. Autom. Lett.
,
6
(
2
), pp.
1224
1231
.
11.
Daoud
,
E. G.
,
Kalbfletsch
,
S. J.
, and
Hummel
,
J. D.
,
1999
, “
Intracardiac Echocardiography to Guide Transseptal Left Heart Catheterization for Radiofrequency Catheter Ablation
,”
J. Cardiovasc. Electrophysiol.
,
10
(
3
), pp.
358
363
.
12.
Khoshnam
,
M.
,
Khalaji
,
I.
, and
Patel
,
R. V.
,
2015
, “
A Robotics-Assisted Catheter Manipulation System for Cardiac Ablation With Real-Time Force Estimation
,”
2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Hamburg, Germany
,
Sept. 28
, pp.
3202
3207
.
13.
Khoshnam
,
M.
, and
Patel
,
R. V.
,
2017
, “
Robotics-Assisted Control of Steerable Ablation Catheters Based on the Analysis of Tendon-Sheath Transmission Mechanisms
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1473
1484
.
14.
Bai
,
R.
,
Di Biase
,
L.
,
Valderrabano
,
M.
,
Lorgat
,
F.
,
Mlcochova
,
H.
,
Tilz
,
R.
,
Meyerfeldt
,
U.
, et al.
2012
, “
Worldwide Experience With the Robotic Navigation System in Catheter Ablation of Atrial Fibrillation: Methodology, Efficacy and Safety
,”
J. Cardiovasc. Electrophysiol.
,
23
(
8
), pp.
820
826
.
15.
Khan
,
E. M.
,
Frumkin
,
W.
,
Ng
,
G. A.
,
Neelagaru
,
S.
,
Abi-Samra
,
F. M.
,
Lee
,
J.
,
Giudici
,
M.
, et al.
2013
, “
First Experience With a Novel Robotic Remote Catheter System: Amigo™Mapping Trial
,”
J. Interv. Card. Electrophysiol.
,
37
(
2
), pp.
121
129
.
16.
Hasanzadeh
,
S.
, and
Janabi-Sharifi
,
F.
,
2014
, “
An Efficient Static Analysis of Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
3
), p.
031011
.
17.
Ott
,
L.
,
Nageotte
,
F.
,
Zanne
,
P.
, and
de Mathelin
,
M.
,
2011
, “
Robotic Assistance to Flexible Endoscopy by Physiological-Motion Tracking
,”
IEEE Trans. Robot.
,
27
(
2
), pp.
346
359
.
18.
Le
,
H. M.
,
Do
,
T. N.
, and
Phee
,
S. J.
,
2016
, “
A Survey on Actuators-Driven Surgical Robots
,”
Sens. Actuators., A.
,
247
(
Aug.
), pp.
323
354
.
19.
Dario
,
P.
, and
Mosse
,
C.
,
2003
, “
Review of Locomotion Techniques for Robotic Colonoscopy
,”
IEEE International Conference on Robotics and Automation
,
Taipei, China
,
Sept. 14
, Vol. 1, pp.
1086
1091
.
20.
Phee
,
S.
,
Ng
,
W.
,
Chen
,
I.
,
Seow-Choen
,
F.
, and
Davies
,
B.
,
1997
, “
Locomotion and Steering Aspects in Automation of Colonoscopy. I. A Literature Review
,”
IEEE Eng. Med. Biol. Mag.
,
16
(
6
), pp.
85
96
.
21.
Lee
,
D.-H.
,
Cheon
,
B.
,
Kim
,
J.
, and
Kwon
,
D.-S.
,
2021
, “
easyEndo Robotic Endoscopy System: Development and Usability Test in a Randomized Controlled Trial With Novices and Physicians
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
17
(
1
), pp.
1
14
.
22.
Loschak
,
P. M.
,
Brattain
,
L. J.
, and
Howe
,
R. D.
,
2017
, “
Algorithms for Automatically Pointing Ultrasound Imaging Catheters
,”
IEEE Trans. Robot.
,
33
(
1
), pp.
81
91
.
23.
Kim
,
Y.-H.
,
Collins
,
J.
,
Li
,
Z.
,
Chinnadurai
,
P.
,
Kapoor
,
A.
,
Lin
,
C. H.
, and
Mansi
,
T.
,
2021
, “
Towards Automatic Manipulation of Intra-cardiac Echocardiography Catheter
,” arXiv:2009.05859 [cs].
24.
Li
,
Z.
,
Collins
,
J.
,
Kim
,
Y.-H.
,
Chinnadurai
,
P.
,
Mansi
,
T.
, and
Lin
,
C. H.
,
2021
, “
Zero-Fluoroscopy Transseptal Puncture Guided by Intelligent Intracardiac Echocardiography Robotics
,”
J. Am. Coll. Cardiol.
,
77
(18_Supplement_1), pp.
970
970
.
25.
Rone
,
W. S.
, and
Ben-Tzvi
,
P.
,
2014
, “
Mechanics Modeling of Multisegment Rod-Driven Continuum Robots
,”
ASME J. Mech. Rob.
,
6
(
4
), p.
041006
.
26.
Sitler
,
J. L.
, and
Wang
,
L.
,
2022
, “
A Modular Open-Source Continuum Manipulator for Underwater Remotely Operated Vehicles
,”
ASME J. Mech. Rob.
,
14
(
6
), p.
060906
.
27.
Camarillo
,
D. B.
,
Milne
,
C. F.
,
Carlson
,
C. R.
,
Zinn
,
M. R.
, and
Salisbury
,
J. K.
,
2008
, “
Mechanics Modeling of Tendon-Driven Continuum Manipulators
,”
IEEE Trans. Robot.
,
24
(
6
), pp.
1262
1273
.
28.
Xu
,
K.
, and
Simaan
,
N.
,
2008
, “
An Investigation of the Intrinsic Force Sensing Capabilities of Continuum Robots
,”
IEEE Trans. Robot.
,
24
(
3
), pp.
576
587
.
29.
Rao
,
P.
,
Peyron
,
Q.
,
Lilge
,
S.
, and
Burgner-Kahrs
,
J.
,
2021
, “
How to Model Tendon-Driven Continuum Robots and Benchmark Modelling Performance
,”
Front. Robot. AI
,
7
, p.
630245
.
30.
Webster
,
R. J.
, and
Jones
,
B. A.
,
2010
, “
Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review
,”
Int. J. Robot. Res.
,
29
(
13
), pp.
1661
1683
.
31.
Shi
,
C.
,
Luo
,
X.
,
Qi
,
P.
,
Li
,
T.
,
Song
,
S.
,
Najdovski
,
Z.
,
Fukuda
,
T.
, and
Ren
,
H.
,
2017
, “
Shape Sensing Techniques for Continuum Robots in Minimally Invasive Surgery: A Survey
,”
IEEE Trans. Biomed. Eng.
,
64
(
8
), pp.
1665
1678
.
32.
Amanzadeh
,
M.
,
Aminossadati
,
S. M.
,
Kizil
,
M. S.
, and
Rakié
,
A. D.
,
2018
, “
Recent Developments in Fibre Optic Shape Sensing
,”
Measurement
,
128
(
Nov.
), pp.
119
137
.
33.
Li
,
J.
,
Zhou
,
Y.
,
Wang
,
C.
,
Wang
,
Z.
, and
Liu
,
H.
,
2020
, “
A Model-Based Method for Predicting the Shapes of Planar Single-Segment Continuum Manipulators With Consideration of Friction and External Force
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041013
.
34.
Do
,
T.
,
Tjahjowidodo
,
T.
,
Lau
,
M.
,
Yamamoto
,
T.
, and
Phee
,
S.
,
2014
, “
Hysteresis Modeling and Position Control of Tendon-sheath Mechanism in Flexible Endoscopic Systems
,”
Mechatronics
,
24
(
1
), pp.
12
22
.
35.
Xu
,
W.
,
Poon
,
C. C. Y.
,
Yam
,
Y.
, and
Chiu
,
P. W. Y.
,
2016
, “
Motion Compensated Controller for a Tendon-Sheath-Driven Flexible Endoscopic Robot
,”
Int. J. Med. Robot. Comput. Assist. Surg.
,
13
(
1
), p.
e1747
.
36.
Wang
,
X.
,
Bie
,
D.
,
Han
,
J.
, and
Fang
,
Y.
,
2020
, “
Active Modeling and Compensation for the Hysteresis of a Robotic Flexible Ureteroscopy
,”
IEEE Access
,
8
, p.
100620
.
37.
Kato
,
T.
,
Okumura
,
I.
,
Kose
,
H.
,
Takagi
,
K.
, and
Hata
,
N.
,
2014
, “
Extended Kinematic Mapping of Tendon-Driven Continuum Robot for Neuroendoscopy
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14
, pp.
1997
2002
.
38.
Zglimbea
,
R.
,
Finca
,
V.
,
Greaban
,
E.
, and
Constantin
,
M.
,
2009
, “
Identification of Systems With Friction Via Distributions Using the Modified Friction LuGre Model
,”
13th WSEAS International Conference on Systems
,
Rodos, Greece
,
July 22
, pp.
576
584
.
39.
Hassani
,
V.
, and
Tjahjowidodo
,
T.
,
2013
, “
Structural Response Investigation of a Triangular-Based Piezoelectric Drive Mechanism to Hysteresis Effect of the Piezoelectric Actuator
,”
Mech. Syst. Signal. Process.
,
36
(
1
), pp.
210
223
.
40.
Kim
,
Y.-H.
, and
Mansi
,
T.
,
2021
, “Shape-Adaptive Hysteresis Compensation for Tendon-Driven Continuum Manipulators,” arXiv:2109.06907 [cs].
41.
Fang
,
S.
,
Franitza
,
D.
,
Torlo
,
M.
,
Bekes
,
F.
, and
Hiller
,
M.
,
2004
, “
Motion Control of a Tendon-Based Parallel Manipulator Using Optimal Tension Distribution
,”
IEEE/ASME Trans. Mechatron.
,
9
(
3
), pp.
561
568
.
42.
Abdallah
,
M.
,
Platt Jr
,
R.
, and
Wampler
,
C. W.
,
2013
, “
Decoupled Torque Control of Tendon-Driven Fingers With Tension Management
,”
Int. J. Robot. Res.
,
32
(
2
), pp.
247
258
.
43.
Camarillo
,
D. B.
,
Carlson
,
C. R.
, and
Salisbury
,
J. K.
,
2009
, “
Configuration Tracking for Continuum Manipulators With Coupled Tendon Drive
,”
IEEE Trans. Robot.
,
25
(
4
), pp.
798
808
.
44.
Kirk
,
D. E.
,
2004
,
Optimal Control Theory: An Introduction
,
Dover Publications
,
Mineola, NY
.
45.
Liberzon
,
D.
,
2012
,
Calculus of Variations and Optimal Control Theory: A Concise Introduction
,
Princeton University Press
,
Princeton, NJ
.
You do not currently have access to this content.