Abstract

To rapidly analyze the dynamic characteristics of a compliant stroke amplification mechanism (CSAM) with completely distributed compliance, an analytical model based on the dynamic stiffness matrix with consideration of the damping effect is proposed. The natural frequency of the CSAM is optimized without attenuation of the amplification ratio based on this model. The optimized CSAM exhibits an approximately 112% higher natural frequency than the original mechanism along the main motion direction. The optimization result is verified through finite element simulation, with less than a 7% difference being observed. Moreover, the effects of frequency on the amplification ratio and input stiffness of the optimized CSAM are also discussed. The structural resonance is defined as the failure criterion of the optimized CSAM, and the sensitivity of the failure probability to manufacturing errors at different positions is analyzed. The findings show that the failure probability of the CSAM is more sensitive to parameters associated with the coordinates of the output stage and vertex.

References

1.
Soergel
,
E.
,
2011
, “
Piezoresponse Force Microscopy (PFM)
,”
J. Phys. D: Appl. Phys.
,
44
(
46
), p.
464003
.
2.
Seol
,
D.
,
Kim
,
B.
, and
Kim
,
Y.
,
2017
, “
Non-Piezoelectric Effects in Piezoresponse Force Microscopy
,”
Curr. Appl. Phys.
,
17
(
5
), pp.
661
674
.
3.
Balke
,
N.
,
Bdikin
,
I.
,
Kalinin
,
S. V.
, and
Kholkin
,
A. L.
,
2009
, “
Electromechanical Imaging and Spectroscopy of Ferroelectric and Piezoelectric Materials: State of the Art and Prospects for the Future
,”
J. Am. Ceram. Soc.
,
92
(
8
), pp.
1629
1647
.
4.
Xu
,
Q.
,
2014
, “
Design and Testing of a Novel Multi-Stroke Micropositioning System With Variable Resolutions
,”
Rev. Sci. Instrum.
,
85
(
2
) .
5.
Dang
,
M. P.
,
Le
,
H. G.
,
Le Chau
,
N.
, and
Dao
,
T. P.
,
2020
, “
A Multi-Objective Optimization Design for a New Linear Compliant Mechanism
,”
Optim. Eng.
,
21
(
2
), pp.
673
705
.
6.
Polit
,
S.
, and
Dong
,
J.
,
2011
, “
Development of a High-Bandwidth XY Nanopositioning Stage for High-Rate Micro-/Nanomanufacturing
,”
IEEE/ASME Trans. Mechatron.
,
16
(
4
), pp.
724
733
.
7.
Liang
,
H.
,
Tang
,
H.
,
Huang
,
L.
,
Gao
,
J.
,
Chen
,
X.
,
To
,
S.
,
Li
,
Y.
, and
He
,
Y.
,
2017
, “
A Large-Stroke Flexure Fast Tool Servo With New Displacement Amplifier
,”
2017 IEEE International Conference on Advanced Intelligent Mechatronics (AIM)
,
Munich, Germany
,
July 3–7
.
8.
Tian
,
F.
,
Yin
,
Z.
, and
Li
,
S.
,
2016
, “
A Novel Long Range Fast Tool Servo for Diamond Turning
,”
Int. J. Adv. Manuf. Technol.
,
86
(
5–8
), pp.
1227
1234
.
9.
Lu
,
H.
,
Lee
,
D.
,
Kim
,
J.
, and
Kim
,
S.
,
2014
, “
Modeling and Machining Evaluation of Microstructure Fabrication by Fast Tool Servo-Based Diamond Machining
,”
Precis. Eng.
,
38
(
1
), pp.
212
216
.
10.
Mercorelli
,
P.
, and
Werner
,
N.
,
2017
, “
An Adaptive Resonance Regulator Design for Motion Control of Intake Valves in Camless Engine Systems
,”
IEEE Trans. Ind. Electron.
,
64
(
4
), pp.
3413
3422
.
11.
Stefanski
,
F.
,
Minorowicz
,
B.
,
Persson
,
J.
,
Plummer
,
A.
, and
Bowen
,
C.
,
2017
, “
Non-Linear Control of a Hydraulic Piezo-Valve Using a Generalised Prandtl–Ishlinskii Hysteresis Model
,”
Mech. Syst. Signal Process.
,
82
(
1
), pp.
412
431
.
12.
Chen
,
F.
,
Zhang
,
Q.
,
Gao
,
Y.
, and
Dong
,
W.
,
2020
, “
A Review on the Flexure-Based Displacement Amplification Mechanisms
,”
IEEE Access
,
8
, pp.
205919
205937
.
13.
Dsouza
,
R. D.
,
Navin
,
K. P.
,
Theodoridis
,
T.
, and
Sharma
,
P.
,
2018
, “
Design, Fabrication and Testing of a 2 DOF Compliant Flexural Microgripper
,”
Microsyst. Technol.
,
24
(
9
), pp.
3867
3883
.
14.
Shen
,
X.
,
Zhang
,
L.
, and
Qiu
,
D.
,
2021
, “
A Lever-Bridge Combined Compliant Mechanism for Translation Amplification
,”
Precis. Eng.
,
67
(
Apr.
), pp.
383
392
.
15.
Lu
,
Q.
,
Nie
,
Q.
,
Jiang
,
X.
,
Cao
,
Q.
, and
Chen
,
D.
,
2016
, “
Magnetostrictive Actuator With Differential Displacement Amplification Mechanism
,”
Mechanika
,
22
(
4
), pp.
273
278
.
16.
Tian
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
, and
Alici
,
G.
,
2009
, “
Development and Dynamic Modelling of a Flexure-Based Scott-Russell Mechanism for Nano-Manipulation
,”
Mech. Syst. Signal Process.
,
23
(
3
), pp.
957
978
.
17.
Ai
,
W.
, and
Xu
,
Q.
,
2014
, “
New Structural Design of a Compliant Gripper Based on the Scott-Russell Mechanism
,”
Int. J. Adv. Rob. Syst.
,
11
(
12
), pp.
1
10
.
18.
Wei
,
H.
,
Shirinzadeh
,
B.
,
Li
,
W.
,
Clark
,
L.
,
Pinskier
,
J.
, and
Wang
,
Y.
,
2017
, “
Development of Piezo-Driven Compliant Bridge Mechanisms: General Analytical Equations and Optimization of Displacement Amplification
,”
Micromachines
,
8
(
8
).
19.
Ling
,
M.
,
Cao
,
J.
,
Jiang
,
Z.
, and
Lin
,
J.
,
2017
, “
Modular Kinematics and Statics Modeling for Precision Positioning Stage
,”
Mech. Mach. Theory
,
107
(
July
), pp.
274
282
.
20.
Fujimura
,
Y.
,
Tsukamoto
,
T.
, and
Tanaka
,
S.
,
2018
, “
Piezoelectric Moonie-Type Resonant Microactuator
,”
Electron. Commun. Jpn.
,
101
(
3
), pp.
3
10
.
21.
Lam
,
K. H.
,
Wang
,
X. X.
, and
Chan
,
H. L. W.
,
2006
, “
Lead-Free Piezoceramic Cymbal Actuator
,”
Sens. Actuators, A
,
125
(
2
), pp.
393
397
.
22.
Dong
,
W.
,
Chen
,
F.
,
Gao
,
F.
,
Yang
,
M.
,
Sun
,
L.
,
Du
,
Z.
,
Tang
,
J.
, and
Zhang
,
D.
,
2018
, “
Development and Analysis of a Bridge-Lever-Type Displacement Amplifier Based on Hybrid Flexure Hinges
,”
Precis. Eng.
,
54
, pp.
171
181
.
23.
Li
,
H.
,
Guo
,
F.
,
Wang
,
Y.
,
Wang
,
Z.
,
Li
,
C.
,
Ling
,
M.
, and
Hao
,
G.
,
2022
, “
Design and Modeling of a Compact Compliant Stroke Amplification Mechanism With Completely Distributed Compliance for Ground-Mounted Actuators
,”
Mech. Mach. Theory
,
167
, p.
104566
.
24.
Qin
,
Y.
,
Shirinzadeh
,
B.
,
Zhang
,
D.
, and
Tian
,
Y.
,
2013
, “
Design and Kinematics Modeling of a Novel 3-DOF Monolithic Manipulator Featuring Improved Scott-Russell Mechanisms
,”
ASME J. Mech. Des.
,
135
(
10
), p. 101004.
25.
Kim
,
J. H.
,
Kim
,
S. H.
, and
Kwak
,
Y. K.
,
2004
, “
Development and Optimization of 3-D Bridge-Type Hinge Mechanisms
,”
Sens. Actuators, A
,
116
(
3
), pp.
530
538
.
26.
Wu
,
H.
,
Lai
,
L.
,
Zhang
,
L.
, and
Zhu
,
L.
,
2022
, “
A Novel Compliant XY Micro-Positioning Stage Using Bridge-Type Displacement Amplifier Embedded With Scott-Russell Mechanism
,”
Precis. Eng.
,
73
, pp.
284
295
.
27.
Chen
,
F.
,
Liu
,
L.
,
Li
,
Q.
,
Epaarachchi
,
J.
,
Leng
,
J.
, and
Liu
,
Y.
,
2018
, “
Experimental and Theoretical Analysis of a Smart Transmission Mechanism System
,”
Smart Mater. Struct.
,
27
(
9
), p.
095022
.
28.
Guo
,
F.
,
Sun
,
Z.
,
Zhang
,
S.
,
Cao
,
R.
, and
Li
,
H.
,
2022
, “
Optimal Design and Reliability Analysis of a Compliant Stroke Amplification Mechanism
,”
Mech. Mach. Theory
, 171, p.
104748
.
29.
Tang
,
H.
, and
Li
,
Y.
,
2014
, “
Development and Active Disturbance Rejection Control of a Compliant Micro-/Nanopositioning Piezostage With Dual Mode
,”
IEEE Trans. Ind. Electron.
,
61
(
3
), pp.
1475
1492
.
30.
Zhu
,
W. L.
,
Zhu
,
Z.
,
Guo
,
P.
, and
Ju
,
B. F.
,
2018
, “
A Novel Hybrid Actuation Mechanism Based XY Nanopositioning Stage With Totally Decoupled Kinematics
,”
Mech. Syst. Signal Process.
,
99
(
15
), pp.
747
759
.
31.
Yu
,
Y. Q.
,
Howell
,
L. L.
,
Lusk
,
C.
,
Yue
,
Y.
, and
He
,
M. G.
,
2005
, “
Dynamic Modeling of Compliant Mechanisms Based on the Pseudo-Rigid-Body Model
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
760
765
.
32.
Guo
,
Z.
,
Tian
,
Y.
,
Liu
,
C.
,
Wang
,
F.
,
Liu
,
X.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2015
, “
Design and Control Methodology of a 3-DOF Flexure-Based Mechanism for Micro/Nano-Positioning
,”
Rob. Comput. Integr. Manuf.
,
32
, pp.
93
105
.
33.
Ling
,
M.
,
Howell
,
L. L.
,
Cao
,
J.
, and
Jiang
,
Z.
,
2018
, “
A Pseudo-Static Model for Dynamic Analysis on Frequency Domain of Distributed Compliant Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
5
), p. 051011.
34.
Ling
,
M.
,
Cao
,
J.
, and
Pehrson
,
N.
,
2019
, “
Kinetostatic and Dynamic Analyses of Planar Compliant Mechanisms via a Two-Port Dynamic Stiffness Model
,”
Precis. Eng.
,
57
, pp.
149
161
.
35.
Han
,
F.
,
Dan
,
D.
, and
Cheng
,
W.
,
2018
, “
Extension of Dynamic Stiffness Method to Complicated Damped Structures
,”
Comput. Struct.
,
208
(
1
), pp.
143
150
.
36.
Yuan
,
S.
, and
Sun
,
H.
,
2021
, “
A General Adaptive Finite Element Eigen-Algorithm Stemming From Wittrick-Williams Algorithm
,”
Thin Walled Struct.
,
161
, p.
107448
.
37.
Adhikari
,
S.
,
Karličić
,
D.
, and
Liu
,
X.
,
2021
, “
Dynamic Stiffness of Nonlocal Damped Nano-Beams on Elastic Foundation
,”
Eur. J. Mech. A. Solids
,
86
.
38.
Manohar
,
C. S.
, and
Adhikari
,
S.
,
1998
, “
Dynamic Stiffness of Randomly Parametered Beams
,”
Probab. Eng. Mech.
,
13
(
1
), pp.
39
51
.
39.
Aquinostraat
,
T. V.
,
2000
, “
Transient Dynamics of Stochastically Parametered Beams
,”
J. Eng. Mech.
,
126
(
11
), pp.
1131
1140
.
You do not currently have access to this content.