Abstract

Cable-driven parallel robots (CDPRs) are system driven exclusively by cables, giving them advantages in operation. However, this also introduces complexity into their mechanical behavior. Indeed, the cable elasticity is affected by a hysteresis phenomenon. There is therefore an uncertainty about the actual value of the cable’s Young’s modulus. However, uncertainty analysis on design parameters of CDPR has not been conducted yet. So, this article first introduces a new modeling of CDPRs allowing to take in consideration the sagging of the cables while considering different pulley architectures as well as the cable dead length between the winch and the pulley. Then, a sensitivity analysis of the main design parameters on the positioning error of the moving platform (MP) is performed through a design of experiments conducted on a suspended CDPR with four cables. For this purpose, the variation of the Young’s modulus of the cables is determined. This allows to quantify and to rank the effects on the theoretical MP pose error of important design parameters that are the type of pulley joint, cable’ Young’s modulus, the cable mass, and the MP mass. This study is conducted for different sizes of CDPR. The results obtained show that the evolution of the effects of the design parameters is not the same depending on the size of the CDPR. Technical major considerations are derived from the presented results as guidelines for CDPR designer, keeping the modeling simple but robust enough for real-time control of CDPRs.

References

1.
Carpio
,
M. A.
,
Placencia
,
J. C.
,
Aller
,
J. M.
,
Saltarén
,
R. J.
,
Rodríguez
,
A.
,
Portilla
,
G. A.
, and
Cely
,
J. S.
,
2019
, “
Modeling and Oscillations Control of a Planar Parallel Robot Subsystem Activated by Cable
,”
2019 IEEE 4th Colombian Conference on Automatic Control (CCAC)
,
Medellin, Colombia
,
Oct. 15–18
, pp.
1
5
.
2.
Merlet
,
J.-P.
,
2006
,
Parallel Robots
, 2nd ed.,
Springer-Verlag Inc.
,
New York
.
3.
Rasheed
,
T.
,
Long
,
P.
,
Marquez-Gamez
,
D.
, and
Caro
,
S.
,
2018
, “
Available Wrench Set for Planar Mobile Cable-Driven Parallel Robots
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, Australia
,
May 21–26
, pp.
962
967
.
4.
Gagliardini
,
L.
,
Caro
,
S.
,
Gouttefarde
,
M.
, and
Girin
,
A.
,
2015
, “
A Reconfiguration Strategy for Reconfigurable Cable-Driven Parallel Robots
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 25–30
, pp.
1613
1620
.
5.
Passarini
,
C.
,
Zanotto
,
D.
, and
Boschetti
,
G.
,
2019
, “
Dynamic Trajectory Planning for Failure Recovery in Cable-Suspended Camera Systems
,”
ASME J. Mech. Rob.
,
11
(
2
), p.
021001
.
6.
Seriani
,
S.
,
Gallina
,
P.
, and
Wedler
,
A.
,
2016
, “
A Modular Cable Robot for Inspection and Light Manipulation on Celestial Bodies
,”
Acta Astronaut.
,
123
, pp.
145
153
.
7.
Izard
,
J.-B.
,
Dubor
,
A.
,
Herve
,
P.-E.
,
Cabay
,
E.
,
Culla
,
D.
,
Rodriguez
,
M.
, and
Barrado
,
M.
,
2018
,
Cable-Driven Parallel Robots. Mechanisms and Machine Science
, Vol.
53
,
Springer
.
8.
Duan
,
B.
,
1999
, “
A New Design Project of the Line Feed Structure for Large Spherical Radio Telescope and Its Nonlinear Dynamic Analysis
,”
Mechatronics
,
9
(
1
), pp.
53
64
.
9.
Perreault
,
S.
, and
Gosselin
,
C.
,
2008
, “
Cable-Driven Parallel Mechanisms: Application to a Locomotion Interface
,”
ASME J. Mech. Des.
,
130
(
10
), p.
102301
.
10.
Baklouti
,
S.
,
Caro
,
S.
, and
Courteille
,
E.
,
2019
, “Elasto-Dynamic Model-Based Control of Non-Redundant Cable-Driven Parallel Robots,”
Dynamics and Control
, Vol.
584
,
Springer
,
CISM International Centre for Mechanical Sciences
, pp.
238
246
.
11.
Mikelsons
,
L.
,
Bruckmann
,
T.
,
Hiller
,
M.
, and
Schramm
,
D.
,
2008
, “
A Real-Time Capable Force Calculation Algorithm for Redundant Tendon-Based Parallel Manipulators
,”
2008 International Conference on Robotics and Automation
,
Pasadena, CA
,
May 19–23
, pp.
3869
3874
.
12.
Picard
,
E.
,
Caro
,
S.
,
Pleastan
,
F.
, and
Claveau
,
F.
,
2018
, “
Control Solution for a Cable Driven Parallel Robot With Highly Variable Payload
,”
ASME 2018 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Quebec City, Canada
,
Aug. 26–29
, pp.
1429
1436
.
13.
Merlet
,
J.
, “
Computing Cross-Sections of the Workspace of Cable-Driven Parallel Robots with Six Sagging Cables
,”
CK 2017 – Computational Kinematics
,
Poitiers, France
,
May 22–24
, pp.
182
189
.
14.
Paty
,
T.
,
Binaud
,
N.
,
Caro
,
S.
, and
Segonds
,
S.
,
2021
, “
Cable-Driven Parallel Robot Modelling Considering Pulley Kinematics and Cable Elasticity
,”
Mech. Mach. Theory
,
159
, p.
104263
.
15.
Paty
,
T.
,
2021
,
Sensibilité des robots parallèles à câbles aux incertitudes des paramètres géométriques des poulies et mécaniques des câbles
,
Université Paul Sabatier Toulouse III
.
16.
Merlet
,
J.
,
2019
, “
Singularity of Cable-Driven Parallel Robot With Sagging Cables: Preliminary Investigation
,”
2019 International Conference on Robotics and Automation (ICRA)
,
Montreal, QC, Canada
,
May 20–24
, pp.
504
509
.
17.
Baklouti
,
S.
,
Caro
,
S.
, and
Courteille
,
E.
,
2018
,
Cable-Driven Parallel Robots
,
Springer International Publishing
,
Midtown Manhattan, New York City
, pp.
37
49
.
18.
Miermeister
,
P.
, and
Pott
,
A.
,
2012
,
Latest Advances in Robot Kinematics
,
Springer
,
Midtown Manhattan, New York City
, pp.
269
276
.
19.
Gouttefarde
,
M.
,
Lamaury
,
J.
,
Reichert
,
C.
, and
Bruckmann
,
T.
,
2015
, “
A Versatile Tension Distribution Algorithm for n-DOF Parallel Robots Driven by n + 2 Cables
,”
IEEE Trans. Rob.
,
31
, pp.
1444
1457
.
20.
Cote
,
A. F.
,
Cardou
,
P.
, and
Gosselin
,
C.
,
2016
, “
A Tension Distribution Algorithm for Cable-Driven Parallel Robots Operating Beyond Their Wrench-Feasible Workspace
,”
2016 16th International Conference on Control, Automation and Systems (ICCAS)
,
Gyeongju, South Korea
,
Oct. 16–19
, pp.
68
73
.
21.
Bruckmann
,
T.
,
Pott
,
A.
,
Franitza
,
D.
, and
Hiller
,
M.
,
2006
, “
A Modular Controller for Redundantly Actuated Tendon-Based Stewart Platforms
,”
EuCoMes, the First Conference on Mechanism Science
,
Obergurgl, Austria
,
Feb. 21–26
, pp.
1
12
.
22.
Irvine
,
H. M.
,
1981
,
Cable Structures
,
The MIT Press Series in Structural Mechanics
,
Cambridge, MA
.
23.
Riehl
,
N.
,
Gouttefarde
,
M.
,
Kurt
,
S.
,
Baradat
,
C.
, and
Pierrot
,
F.
,
2009
, “
Effects of Non-Negligible Cable Mass on the Static Behavior of Large Workspace Cable-Driven Parallel Mechanisms
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
2193
2198
.
24.
Hanafie
,
J.
,
Nurahmi
,
L.
,
Caro
,
S.
, and
Pramujati
,
B.
,
2018
, “
Design Optimization of Spatial Four Cables Suspended Cable Driven Parallel Robot for Rapide Life-Scan
,”
International Conferences in Mechanical Engineering (ICOME 2017)
,
Surabaya, Indonesia
,
July
.
25.
Phuoc
,
T. T.
, and
Truong
,
T. N.
,
2021
, “
Using a Cable-Driven Parallel Robot With Applications in 3D Concrete Printing
,”
Appl. Sci.
,
11
(
2
), p.
563
.
26.
Merlet
,
J.
,
2014
, “
Checking the Cable Configuration of Cable-Driven Parallel Robots on a Trajectory
,”
2014 IEEE International Conference on Robotics and Automation (ICRA)
,
Hong Kong, China
,
May 31–June 5
, pp.
1586
1591
.
27.
Binaud
,
N.
,
Caro
,
S.
,
Wenger
,
P.
,
2021
, “
Sensitivity Comparison of Planar Parallel Manipulators
,”
Mech. Mach. Theory
,
45
(
11
), pp.
1477
1490
.
You do not currently have access to this content.