Abstract

Studies have shown that the suspended backpack, a wearable device allowing the backpack moving relative to user’s back, can effectively reduce the accelerative vertical force of the backpack to reduce the metabolic cost of users. However, the existing suspended backpack cannot eliminate the accelerative vertical force due to the nonzero suspension stiffness. This paper proposes a constant force suspended backpack adaptable to the varying load to eliminate the accelerative vertical force on the load. To this end, a spring constant force balancing mechanism is designed to achieve near-zero-stiffness suspension. Moreover, a multi-pulley compensation mechanism is proposed for compensating the balance error caused by the pulley diameter to achieve constant force theoretically, and an adjustable mechanism is added to the suspended backpack to nearly achieve constant force balance under different loads. We conducted experiments to validate the efficiency of the constant force suspended backpack. The results demonstrate that the suspended backpack can effectively reduce the maximum net metabolic power of the human by 13.1%, the displacement of the load is reduced by 87.5%, and the peak average acceleration vertical force reduction rate is 88.5%.

References

1.
Park
,
S.
, and
Jayaraman
,
S.
,
2003
, “
Enhancing the Quality of Life Through Wearable Technology
,”
IEEE Eng. Med. Biol. Mag.
,
22
(
3
), pp.
41
48
.
2.
Knapik
,
J.
,
Harman
,
E.
, and
Reynolds
,
K.
,
1996
, “
Load Carriage Using Packs: A Review of Physiological, Biomechanical and Medical Aspects
,”
Appl. Ergon.
,
27
(
3
), pp.
207
216
.
3.
Park
,
J.-H.
,
Stegall
,
P.
, and
Agrawal
,
S. K.
,
2016
, “
Reducing Dynamic Loads From a Backpack During Load Carriage Using an Upper Body Assistive Device
,”
ASME J. Mech. Rob.
,
8
(
5
), p.
051017
.
4.
Hong
,
Y.
,
Li
,
J.-X.
, and
Fong
,
D. T.-P.
,
2008
, “
Effect of Prolonged Walking With Backpack Loads on Trunk Muscle Activity and Fatigue in Children
,”
J. Electromyogr. Kinesiology
,
18
(
6
), pp.
990
996
.
5.
Bastien
,
G. J.
,
Willems
,
P. A.
,
Schepens
,
B.
, and
Heglund
,
N. C.
,
2005
, “
Effect of Load and Speed on the Energetic Cost of Human Walking
,”
Eur. J. Appl. Physiol.
,
94
(
1–2
), pp.
76
83
.
6.
Simpson
,
K. M.
,
Munro
,
B. J.
, and
Steele
,
J. R.
,
2011
, “
Backpack Load Affects Lower Limb Muscle Activity Patterns of Female Hikers During Prolonged Load Carriage
,”
J. Electromyogr. Kinesiology
,
21
(
5
), pp.
782
788
.
7.
Hong
,
Y.
, and
Cheung
,
C.-K.
,
2003
, “
Gait and Posture Responses to Backpack Load During Level Walking in Children
,”
Gait & Posture
,
17
(
1
), pp.
28
33
.
8.
Attwells
,
R. L.
,
Birrell
,
S. A.
,
Hooper
,
R. H.
, and
Mansfield
,
N. J.
,
2006
, “
Influence of Carrying Heavy Loads on Soldiers’ Posture, Movements and Gait
,”
Ergonomics
,
49
(
14
), pp.
1527
1537
.
9.
Hadid
,
A.
,
Belzer
,
N.
,
Shabshin
,
N.
,
Zeilig
,
G.
,
Gefen
,
A.
, and
Epstein
,
Y.
,
2015
, “
The Effect of Mechanical Strains in Soft Tissues of the Shoulder During Load Carriage
,”
J. Biomech.
,
48
(
15
), pp.
4160
4165
.
10.
Abe
,
D.
,
Muraki
,
S.
, and
Yasukouchi
,
A.
,
2008
, “
Ergonomic Effects of Load Carriage on Energy Cost of Gradient Walking
,”
Appl. Ergon.
,
39
(
2
), pp.
144
149
.
11.
Birrell
,
S. A.
, and
Haslam
,
R. A.
,
2009
, “
The Effect of Military Load Carriage on 3-D Lower Limb Kinematics and Spatiotemporal Parameters
,”
Ergonomics
,
52
(
10
), pp.
1298
1304
. .
12.
Birrell
,
S. A.
, and
Haslam
,
R. A.
,
2010
, “
The Effect of Load Distribution within Military Load Carriage Systems on the Kinetics of Human Gait
,”
Appl. Ergon.
,
41
(
4
), pp.
585
590
.
13.
Maloiy
,
G. M. O.
,
Heglund
,
N. C.
,
Prager
,
L. M.
,
Cavagna
,
G. A.
, and
Taylor
,
C. R.
,
1986
, “
Energetic Cost of Carrying Loads: Have African Women Discovered an Economic Way?
,”
Nature
,
319
(
6055
), pp.
668
669
.
14.
Bastien
,
G. J.
,
Schepens
,
B.
,
Willems
,
P. A.
, and
Heglund
,
N. C.
,
2005
, “
Energetics of Load Carrying in Nepalese Porters
,”
Science
,
308
(
5729
), pp.
1755
1755
.
15.
Zhang
,
B.
,
Liu
,
Y.
,
Fan
,
W.
,
Wang
,
Z.
, and
Liu
,
T.
,
2020
, “
Pilot Study of a Hover Backpack With Tunable Air Damper for Decoupling Load and Human
,”
2020 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM)
,
Boston, MA
,
July 6–9
,
pp. 1834–1839
.
16.
Kram
,
R.
,
1991
, “
Carrying Loads With Springy Poles
,”
J. Appl. Physiol.
,
71
(
3
), pp.
1119
1122
.
17.
Castillo
,
E. R.
,
Lieberman
,
G. M.
,
McCarty
,
L. S.
, and
Lieberman
,
D. E.
,
2014
, “
Effects of Pole Compliance and Step Frequency on the Biomechanics and Economy of Pole Carrying During Human Walking
,”
J. Appl. Physiol.
,
117
(
5
), pp.
507
517
.
18.
Schroeder
,
R. T.
,
Croft
,
J. L.
,
Ngo
,
G. D.
, and
Bertram
,
J. E. A.
,
2018
, “
Properties of Traditional Bamboo Carrying Poles Have Implications for User Interactions
,”
PLoS ONE
,
13
(
5
), p.
e0196208
.
19.
Potwar
,
K.
,
Ackerman
,
J.
, and
Seipel
,
J.
,
2015
, “
Design of Compliant Bamboo Poles for Carrying Loads
,”
ASME J. Mech. Des.
,
137
(
1
), p.
011404
.
20.
Keren
,
R.
, and
Or
,
Y.
,
2018
, “
Theoretical Analysis and Numerical Optimization of a Wearable Spring-Clutch Mechanism for Reducing Metabolic Energy Cost During Human Walking
,”
ASME J. Mech. Rob.
,
10
(
6
), p.
061004
.
21.
Hao
,
M.
,
Zhang
,
J.
,
Chen
,
K.
,
Asada
,
H.
, and
Fu
,
C.
,
2020
, “
Supernumerary Robotic Limbs to Assist Human Walking With Load Carriage
,”
ASME J. Mech. Rob.
,
12
(
6
), p.
061014
.
22.
Kim
,
W. S.
,
Lee
,
H. D.
,
Lim
,
D. H.
,
Han
,
C. S.
, and
Han
,
J. S.
,
2013
, “
Development of a Lower Extremity Exoskeleton System for Walking Assistance While Load Carrying
,”
Proceedings of the Sixteenth International Conference on Climbing and Walking Robots
,
Sydney, Australia
,
July 14–17
, pp.
35
42
.
23.
Wang
,
S.
,
Wang
,
L.
,
Meijneke
,
C.
,
van Asseldonk
,
E.
,
Hoellinger
,
T.
,
Cheron
,
G.
,
Ivanenko
,
Y.
, et al
,
2015
, “
Design and Control of the Mindwalker Exoskeleton
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
23
(
2
), pp.
277
286
.
24.
Zoss
,
A. B.
,
Kazerooni
,
H.
, and
Chu
,
A.
,
2006
, “
Biomechanical Design of the Berkeley Lower Extremity Exoskeleton (BLEEX)
,”
IEEE/ASME Trans. Mechatron.
,
11
(
2
), pp.
128
138
.
25.
Rome
,
L.
,
Flynn
,
L.
, and
Yoo
,
T.
,
2006
, “
Biomechanics: Rubber Bands Reduce 662 the Cost of Carrying Loads
,”
Nature
,
444
(
7122
), pp.
1023
1024
.
26.
Rome
,
L. C.
,
Flynn
,
L.
,
Goldman
,
E. M.
, and
Yoo
,
T. D.
,
2005
, “
Generating Electricity While Walking With Loads
,”
Science
,
309
(
5741
), pp.
1725
1728
.
27.
Ackerman
,
J.
, and
Seipel
,
J.
,
2014
, “
A Model of Human Walking Energetics With an Elastically-Suspended Load
,”
J. Biomech.
,
47
(
8
), pp.
1922
1927
.
28.
Foissac
,
M.
,
Millet
,
G. Y.
,
Geyssant
,
A.
,
Freychat
,
P.
, and
Belli
,
A.
,
2009
, “
Characterization of the Mechanical Properties of Backpacks and Their Influence on the Energetics of Walking
,”
J. Biomech.
,
42
(
2
), pp.
125
130
. .
29.
Xie
,
L.
, and
Cai
,
M.
,
2015
, “
Development of a Suspended Backpack for Harvesting Biomechanical Energy
,”
ASME J. Mech. Des.
,
137
(
5
), p.
054503
.
30.
Xie
,
L.
, and
Cai
,
M.
,
2015
, “
Increased Energy Harvesting and Reduced Accelerative Load for Backpacks via Frequency Tuning
,”
Mech. Syst. Signal Process.
,
58–59
, pp.
399
415
.
31.
He
,
L.
,
Xiong
,
C.
,
Zhang
,
Q.
,
Chen
,
W.
,
Fu
,
C.
, and
Lee
,
K.-M.
,
2020
, “
A Backpack Minimizing the Vertical Acceleration of the Load Improves the Economy of Human Walking
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
28
(
9
), pp.
1994
2004
.
32.
Yang
,
L.
,
Zhang
,
J.
,
Xu
,
Y.
,
Chen
,
K.
, and
Fu
,
C.
,
2020
, “
Energy Performance Analysis of a Suspended Backpack With an Optimally Controlled Variable Damper for Human Load Carriage
,”
Mech. Mach. Theory
,
146
, p.
103738
.
33.
Shaw
,
J.-S.
, and
Wang
,
C.-A.
,
2019
, “
Design and Control of Adaptive Vibration Absorber for Multimode Structure
,”
J. Intell. Mater. Syst. Struct.
,
30
(
7
), pp.
1043
1052
.
34.
Li
,
H.
,
Li
,
Y.
, and
Li
,
J.
,
2020
, “
Negative Stiffness Devices for Vibration Isolation Applications: A Review
,”
Adv. Struct. Eng.
,
23
(
8
), pp.
1739
1755
.
35.
Zhou
,
J.
,
Wang
,
X.
,
Xu
,
D.
, and
Bishop
,
S.
,
2015
, “
Nonlinear Dynamic Characteristics of a Quasi-Zero Stiffness Vibration Isolator With Cam–Roller–Spring Mechanisms
,”
J. Sound Vib.
,
346
, pp.
53
69
.
36.
Zou
,
W.
,
Cheng
,
C.
,
Ma
,
R.
,
Hu
,
Y.
, and
Wang
,
W.
,
2021
, “
Performance Analysis of a Quasi-zero Stiffness Vibration Isolation System With Scissor-Like Structures
,”
Arch. Appl. Mech.
,
91
(
1
), pp.
117
133
.
37.
Hoover
,
J.
, and
Meguid
,
S. A.
,
2011
, “
Performance Assessment of the Suspended-Load Backpack
,”
Int. J. Mech. Mater. Des.
,
7
(
2
), pp.
111
121
.
38.
Leng
,
Y.
,
Lin
,
X.
,
Lu
,
Z.
,
Song
,
A.
,
Yu
,
Z.
, and
Fu
,
C.
,
2020
, “
A Model to Predict Ground Reaction Force for Elastically-Suspended Backpacks
,”
Gait & Posture
,
82
, pp.
118
125
.
39.
Leng
,
Y.
,
Lin
,
X.
,
Yang
,
L.
,
Xu
,
Y.
, and
Fu
,
C.
,
2020
, “
Design of an Elastically Suspended Backpack With Tunable Stiffness
,”
Proceedings of the 2020 5th International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Shenzhen, China
,
Dec. 18–21
, pp.
359
363
.
40.
Rebula
,
J. R.
, and
Kuo
,
A. D.
,
2015
, “
The Cost of Leg Forces in Bipedal Locomotion: A Simple Optimization Study
,”
PLoS ONE
,
10
(
2
), p.
e0117384
.
41.
Li
,
D.
,
Li
,
T.
,
Li
,
Q.
,
Liu
,
T.
, and
Yi
,
J.
,
2016
, “
A Simple Model for Predicting Walking Energetics With Elastically-Suspended Backpack
,”
J. Biomech.
,
49
(
16
), pp.
4150
4153
.
42.
Leng
,
Y.
,
Lin
,
X.
,
Deng
,
R.
,
Chang
,
J.
,
Yang
,
L.
,
Zhang
,
K.
, and
Fu
,
C.
,
2021
, “
Design and Implement an Elastically Suspended Back Frame for Reducing the Burden of Carrier
,”
Proceedings of the 2021 6th IEEE International Conference on Advanced Robotics and Mechatronics (ICARM)
,
Chongqing, China
,
July 3–5
, pp.
236
240
.
43.
Chheta
,
Y. R.
,
Joshi
,
R. M.
,
Gotewal
,
K. K.
, and
ManoahStephen
,
M.
,
2017
, “
A Review on Passive Gravity Compensation
,”
Proceedings of the 2017 International Conference of Electronics, Communication and Aerospace Technology (ICECA)
,
Coimbatore, India
,
Apr. 20–22
, pp.
184
189
.
44.
Peng
,
Y.
,
Bu
,
W.
, and
Chen
,
J.
,
2022
, “
Design of the Wearable Spatial Gravity Balance Mechanism
,”
ASME J. Mech. Rob.
,
14
(
3
), p.
031006
.
45.
Franco
,
J. A.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2021
, “
Static Balancing of Four-Bar Compliant Mechanisms With Torsion Springs by Exerting Negative Stiffness Using Linear Spring At the Instant Center of Rotation
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031010
.
46.
Tseng
,
T.-Y.
,
Lin
,
Y.-J.
,
Hsu
,
W.-C.
,
Lin
,
L.-F.
, and
Kuo
,
C.-H.
,
2017
, “
A Novel Reconfigurable Gravity Balancer for Lower-Limb Rehabilitation With Switchable Hip/Knee-Only Exercise
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041002
.
47.
Liu
,
J.
,
He
,
Y.
,
Yang
,
J.
,
Cao
,
W.
, and
Wu
,
X.
,
2022
, “
Design and Analysis of a Novel 12-DOF Self-Balancing Lower Extremity Exoskeleton for Walking Assistance
,”
Mech. Mach. Theory
,
167
, p.
104519
.
48.
Huang
,
L.
,
Yang
,
Z.
,
Wang
,
R.
, and
Xie
,
L.
,
2020
, “
Physiological and Biomechanical Effects on the Human Musculoskeletal System While Carrying a Suspended-Load Backpack
,”
J. Biomech.
,
108
, pp.
109894
.
49.
Brockway
,
J. M.
,
1986
, “
Derivation of Formulae Used to Calculate Energy Expenditure in Man
,”
The Weir
, pp.
11
.
50.
Kim
,
J.
,
Lee
,
G.
,
Heimgartner
,
R.
,
Revi
,
D. A.
,
Karavas
,
N.
,
Nathanson
,
D.
,
Galiana
,
I.
, et al
,
2019
, “
Reducing the Metabolic Rate of Walking and Running With a Versatile, Portable Exosuit
,”
Science
,
365
(
6454
), pp.
668
672
.
51.
Harman
,
E.
,
Han
,
K. H.
,
Frykman
,
P.
, and
Pandorf
,
C.
,
2000
,
The Effects of Walking Speed on the Biomechanics of Backpack Load Carriage
:, Defense Technical Information Center, Fort Belvoir, VA.
You do not currently have access to this content.