Abstract

Origami has shown the potential to design unique mechanical properties and complex three-dimensional shapes by folding through designed crease patterns on flat materials. The authors investigated a new honeycomb-based origami metamaterial called “kirigami honeycomb.” Resembling origami, kirigami honeycomb allows a single flat sheet of material with periodic slits to be folded into a honeycomb shape. Previous studies have reported successful use of this method to create various honeycomb shapes, changing only the folding line diagrams (FLDs). These previous studies have, however, considered only one-directional cross-sectional modifications; the core thickness and curvature changed only in the W-direction. This study proposes a new method that will support complex 3D honeycomb designs made from single flat sheets. A newly defined crease pattern conversion method provides arbitrary scaling of the honeycomb shape in the L-direction. The combined FLD and pattern conversion design methods encourage the cost-effective manufacture of 3D shaped honeycombs from single flat paper sheets. The proposed method is implemented to the design software, enabling to design arbitrary cross-sectional honeycomb cores with optional L-directional scaling.

References

1.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U.S.A.
,
110
(
9
), pp.
3276
3281
.
2.
Wei
,
Z. Y.
,
Guo
,
Z. V.
,
Dudte
,
L.
,
Liang
,
H. Y.
, and
Mahadevan
,
L.
,
2013
, “
Geometric Mechanics of Periodic Pleated Origami
,”
Phys. Rev. Lett.
,
110
(
21
), p.
215501
.
3.
Yasuda
,
H.
,
Chen
,
Z.
, and
Yang
,
J.
,
2016
, “
Multitransformable Leaf-Out Origami With Bistable Behavior
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031013
.
4.
Chen
,
Y.
,
Lv
,
W.
,
Li
,
J.
, and
You
,
Z.
,
2017
, “
An Extended Family of Rigidly Foldable Origami Tubes
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021002
.
5.
Lee
,
T. U.
, and
Gattas
,
J. M.
,
2016
, “
Geometric Design and Construction of Structurally Stabilized Accordion Shelters
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031009
.
6.
Hu
,
Y.
,
Liang
,
H.
, and
Duan
,
H.
,
2019
, “
Design of Cylindrical and Axisymmetric Origami Structures Based on Generalized Miura-ori Cell
,”
ASME J. Mech. Rob.
,
11
(
5
), p.
051004
.
7.
Hu
,
Y.
,
Zhou
,
Y.
, and
Liang
,
H.
,
2021
, “
Constructing Rigid-Foldable Generalized Miura-ori Tessellations for Curved Surfaces
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011017
.
8.
Yang
,
Y.
, and
You
,
Z.
,
2018
, “
Geometry of Transformable Metamaterials Inspired by Modular Origami
,”
ASME J. Mech. Rob.
,
10
(
2
), p.
021001
.
9.
Pratapa
,
P. P.
,
Liu
,
K.
,
Vasudevan
,
S. P.
, and
Paulino
,
G. H.
,
2021
, “
Reprogrammable Kinematic Branches in Tessellated Origami Structures
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031004
.
10.
Wan
,
H.
,
Ohtaki
,
H.
,
Kotosaka
,
S.
, and
Hu
,
G.
,
2004
, “
A Study of Negative Poisson’s Ratios in Auxetic Honeycombs Based on a Large Deflection Model
,”
Eur. J. Mech. A
,
23
(
1
), pp.
95
106
.
11.
Bitzer
,
T.
,
1997
,
Honeycomb Technology
,
Springer Science & Business Media
,
Berlin
.
12.
Schmitt
,
F.
,
Piccin
,
O.
,
Bayle
,
B.
,
Renaud
,
P.
, and
Barbé
,
L.
,
2021
, “
Inverted Honeycomb Cell as a Reinforcement Structure for Building Soft Pneumatic Linear Actuators
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011020
.
13.
Nojima
,
T.
, and
Saito
,
K.
,
2006
, “
Development of Newly Designed Ultra-Light Core Structures
,”
JSME Int. J. Ser. A Solid Mech. Mater. Eng.
,
49
(
1
), pp.
38
42
.
14.
Saito
,
K.
, and
Nojima
,
T.
,
2007
, “
Development of Light-Weight Rigid Core Panels
,”
J. Solid Mech. Mater. Eng.
,
1
(
9
), pp.
1097
1104
.
15.
Saito
,
K.
,
Pellegrino
,
S.
, and
Nojima
,
T.
,
2014
, “
Manufacture of Arbitrary Cross-Section Composite Honeycomb Cores Based on Origami Techniques
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051011
.
16.
Wang
,
L.
,
Saito
,
K.
,
Gotou
,
Y.
, and
Okabe
,
Y.
,
2017
, “
Design and Fabrication of Aluminum Honeycomb Structures Based on Origami Technology
,”
J. Sandw. Struct. Mater.
,
21
(
4
), pp.
4
6
.
17.
Saito
,
K.
,
Agnese
,
F.
, and
Scarpa
,
F.
,
2011
, “
A Cellular Kirigami Morphing Wingbox Concept
,”
J. Intell. Mater. Syst. Struct.
,
22
(
9
), pp.
935
944
.
18.
Mitani
,
J.
,
2009
, “
A Design Method for 3D Origami Based on Rotational Sweep
,”
Comput. Aided Des. Appl.
,
6
(
1
), pp.
69
79
.
19.
Tachi
,
T.
,
2009
, “
Generalization of Rigid-Foldable Quadrilateral-Mesh Origami
,”
J. Int. Assoc. Shell Spat. Struct.
,
50
(
3
), pp.
173
179
.
20.
Lang
,
R. J.
,
1996
, “
A Computational Algorithm for Origami Design
,”
Proceedings of the Twelfth Annual Symposium on Computational Geometry
,
Philadelphia, PA
,
May 24
, pp.
98
105
.
21.
Tachi
,
T.
,
2009
, “
Origamizing Polyhedral Surfaces
,”
IEEE Trans. Vis. Comput. Graph.
,
16
(
2
), pp.
298
311
.
22.
McNeel
,
2018
, “
Grasshopper
” [Online], http://www.grasshopper.com
23.
Ghassaei
,
A.
,
2017
, “
Origami Simulator
” [Online], http://apps.amandaghassaei.com/OrigamiSimulator/
24.
Hernandez
,
E. A. P.
,
Hartl
,
D. J.
,
Malak
,
R. J.
,
Akleman
,
E.
,
Gonen
,
O.
,
and Kung
,
H. W.
,
2016
, “
Design Tools for Patterned Self-Folding Reconfigurable Structures Based on Programmable Active Laminates
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031015
.
25.
Davis
,
D.
,
Chen
,
B.
,
Dickey
,
M. D.
, and
Genzer
,
J.
,
2016
, “
Self-Folding of Thick Polymer Sheets Using Gradients of Heat
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031014
.
You do not currently have access to this content.