Abstract

Antenna panels of a satellite are usually deployed and supported by a deployable mechanism. The accuracy of the deployable mechanism is important because it directly affects the performance of the satellite. This article focuses on the accuracy analysis of a deployable antenna considering the coupled effects of joint clearances and link tolerances, and based on which, two accuracy synthesis methods are further discussed. A novel geometric error modeling method is proposed to estimate the error space of the outer panel of the antenna. The advantages of the proposed method are that it can handle the overconstrained constraints efficiently and decouple the positioning error and orientation error. Moreover, the error space is visualized using a sampling method. Based on the proposed error modeling method, the maximum orientation and positioning errors are computed, and following which, sensitives of the antenna accuracy to tolerances considering various sizes of clearances are analyzed. Finally, two optimization methods for accuracy synthesis are discussed, and instructive conclusions are drawn.

References

1.
Li
,
X.
,
Ding
,
X.
, and
Chirikjian
,
G. S.
,
2015
, “
Analysis of Angular-Error Uncertainty in Planar Multiple-Loop Structures With Joint Clearances
,”
Mech. Mach. Theory
,
91
, pp.
69
85
.
2.
Zhao
,
Q.
,
Guo
,
J.
,
Hong
,
J.
, and
Liu
,
Z.
,
2019
, “
Analysis of Angular Errors of the Planar Multi-Closed-Loop Deployable Mechanism With Link Deviations and Revolute Joint Clearances
,”
Aerosp. Sci. Technol.
,
87
, pp.
25
36
.
3.
Ting
,
K.-L.
, and
Liu
,
Y.-W.
,
1991
, “
Rotatability Laws for n-bar Kinematic Chains and Their Proof
,”
ASME. J. Mech. Des.
,
113
(
1
), pp.
32
39
.
4.
Yu
,
D.
,
Zhao
,
Q.
,
Guo
,
J.
,
Chen
,
F.
, and
Hong
,
J.
,
2021
, “
Accuracy Analysis of Spatial Overconstrained Extendible Support Structures Considering Geometric Errors, Joint Clearances and Link Flexibility
,”
Aerospace Sci. Technol.
,
119
, p.
107098
.
5.
Yang
,
Y.
,
Luo
,
J.
,
Zhang
,
W.
,
Xie
,
S.
,
Sun
,
Y.
, and
Li
,
H.
,
2016
, “
Accuracy Analysis of a Multi-Closed-Loop Deployable Mechanism
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
230
(
4
), pp.
611
621
.
6.
Yang
,
Y.
,
Xie
,
S.
,
Zhang
,
W.
,
Luo
,
J.
, and
Li
,
H.
,
2016
, “
Accuracy Model, Analysis, and Adjustment in the Context of Multi-Closed-Loop Planar Deployable Mechanisms
,”
Advan. Mechanic. Eng.
,
8
(
3
), p.
1687814016641836
.
7.
Ding
,
J.
, and
Wang
,
C.
,
2021
, “
Accuracy Analysis and Optimization of an Extendible Support Structure With Joint Clearances
,”
Proc. Inst. Mech. Eng. Part C: J. Mech. Eng. Sci.
,
235
(
19
), pp.
4014
4025
.
8.
Ting
,
K.-L.
,
Zhu
,
J.
, and
Watkins
,
D.
,
2000
, “
The Effects of Joint Clearance on Position and Orientation Deviation of Linkages and Manipulators
,”
Mech. Mach. Theory
,
35
(
3
), pp.
391
401
.
9.
Ting
,
K.-L.
,
Hsu
,
K.-L.
, and
Wang
,
J.
,
2017
, “
Clearance-Induced Orientation Uncertainty of Spherical Linkages
,”
ASME J. Mech. Rob.
,
9
(
6
), p.
061001
.
10.
Chan
,
C. L.
, and
Ting
,
K.-L.
,
2021
, “
Clearance-Induced Orientation Uncertainty of Spherical Linkages
,”
ASME J. Mech. Rob.
,
13
(
2
), p.
021021
.
11.
Tsai
,
M.-J.
, and
Lai
,
T.-H.
,
2004
, “
Kinematic Sensitivity Analysis of Linkage with Joint Clearance Based on Transmission Quality
,”
Mech. Mach. Theory
,
39
(
11
), pp.
1189
1206
.
12.
Tsai
,
M.-J.
, and
Lai
,
T.-H.
,
2008
, “
Accuracy Analysis of a Multi-Loop Linkage with Joint Clearances
,”
Mech. Mach. Theory
,
43
(
9
), pp.
1141
1157
.
13.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
2
), p.
021013
.
14.
Tian
,
W.
,
Gao
,
W.
,
Zhang
,
D.
, and
Huang
,
T.
,
2014
, “
A General Approach for Error Modeling of Machine Tools
,”
Int. J. Mach. Tools. Manuf.
,
79
, pp.
17
23
.
15.
Frisoli
,
A.
,
Solazzi
,
M.
,
Pellegrinetti
,
D.
, and
Bergamasco
,
M.
,
2011
, “
A New Screw Theory Method for the Estimation of Position Accuracy in Spatial Parallel Manipulators with Revolute Joint Clearances
,”
Mech. Mach. Theory
,
46
(
42
), pp.
1929
1949
.
16.
Cammarata
,
A.
,
2017
, “
A Novel Method to Determine Position and Orientation Errors in Clearance-Affected Overconstrained Mechanisms
,”
Mech. Mach. Theory
,
118
, pp.
247
264
.
17.
Simas
,
H.
, and
Di Gregorio
,
R.
,
2016
, “
Geometric Error Effects on Manipulators’ Positioning Precision: A General Analysis and Evaluation Method
,”
ASME J. Mech. Rob.
,
8
(
6
), p.
061016
.
18.
Shen
,
H.
,
Meng
,
Q.
,
Li
,
J.
,
Deng
,
J.
, and
Wu
,
G.
,
2021
, “
Kinematic Sensitivity, Parameter Identification and Calibration of a Non-Fully Symmetric Parallel Delta Robot
,”
Mech. Mach. Theory
,
161
, p.
104311
.
19.
Zhao
,
Q.
,
Guo
,
J.
, and
Hong
,
J.
,
2019
, “
Closed-Form Error Space Calculation for Parallel/hybrid Manipulators Considering Joint Clearance, Input Uncertainty, and Manufacturing Imperfection
,”
Mech. Mach. Theory
,
142
, p.
103608
.
20.
Meng
,
J.
, and
Li
,
Z.
,
2005
, “
A General Approach for Accuracy Analysis of Parallel Manipulators With Joint Clearance
,”
IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Edmonton, AB, Canada
,
Aug. 2–6
, IEEE, pp.
2468
2473
.
21.
Meng
,
J.
,
Zhang
,
D.
, and
Li
,
Z.
,
2009
, “
Accuracy Analysis of Parallel Manipulators With Joint Clearance
,”
ASME J. Mech. Des.
,
131
(
1
), p.
011013
.
22.
Briot
,
S.
, and
Bonev
,
I. A.
,
2010
, “
Accuracy Analysis of 3t1r Fully-Parallel Robots
,”
Mech. Mach. Theory
,
45
(
5
), pp.
695
706
.
23.
Yao
,
R.
,
Zhu
,
W.
, and
Huang
,
P.
,
2013
, “
Accuracy Analysis of Stewart Platform Based on Interval Analysis Method
,”
Chinese J. Mech. Eng.
,
26
(
1
), pp.
29
34
.
24.
Chen
,
G.
,
Wang
,
H.
, and
Lin
,
Z.
,
2013
, “
A Unified Approach to the Accuracy Analysis of Planar Parallel Manipulators Both With Input Uncertainties and Joint Clearance
,”
Mech. Mach. Theory
,
64
, pp.
1
17
.
25.
Ding
,
J.
,
Lyu
,
S.
,
Da
,
T.
,
Wang
,
C.
, and
Chirikjian
,
G. S.
,
2019
, “
Error Space Estimation of 3-dof Planar Parallel Mechanisms
,”
ASME J. Mech. Rob.
,
11
(
3
), p.
031013
.
26.
Ding
,
J.
, and
Wang
,
C.
,
2021
, “
A Geometric Approach for Error Space Estimation of Planar Linkage
,”
Proceedings of the ASME 2021 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8B: 45th Mechanisms and Robotics Conference (MR)
,
Virtual, Online
,
Aug. 17–19
.
27.
Ding
,
J.
,
Dong
,
Y.
,
Liu
,
X.
, and
Wang
,
C.
,
2022
, “
Error-Space-Oriented Tolerance Design for a Deployable Mechanism With Multiple Clearances
,”
Robotica
,
40
(
9
), pp.
3254
3265
.
28.
Kumaraswamy
,
U.
,
Shunmugam
,
M. S.
, and
Sujatha
,
S.
,
2013
, “
A Unified Framework for Tolerance Analysis of Planar and Spatial Mechanisms Using Screw Theory
,”
Mech. Mach. Theory
,
69
, pp.
168
184
.
29.
Huang
,
T.
,
Whitehouse
,
D. J.
, and
Chetwynd
,
D. G.
,
2002
, “
A Unified Error Model for Tolerance Design, Assembly and Error Compensation of 3-dof Parallel Kinematic Machines With Parallelogram Struts
,”
CIRP. Ann.
,
51
(
1
), pp.
297
301
.
30.
Martin
,
H.
,
Benjamin
,
S.
, and
Sandro
,
W.
,
2020
, “
From Tolerance Allocation to Tolerance-cost Optimization: a Comprehensive Literature Review
,”
Int. J. Adv. Manuf. Technol.
,
107
(
1
), pp.
1
54
.
31.
Thomsa
,
W. D. R.
,
2004
, “
Radarsat-2 Extendible Support Structure
,”
Can. J. Remote Sens.
,
30
(
3
), pp.
282
286
.
You do not currently have access to this content.