Abstract

By considering both motion smoothness and dynamic stress, a trajectory planning method for delta robots, with the goal of determining the two optimal normalized time factors that dominate the motion path in operation space, is presented in this article. First, based on the semianalytical elastodynamics model of parallel robots, which considers the compliance of the limbs and joints, a dynamic stress model of the kinematic chain was built. Two indices were proposed to reflect the motion smoothness and dynamic stress. A sensitivity analysis and an optimization of the normalized time factors for a modified fifth-order B-spline approach were conducted in isight and matlab. The results show that the two normalized time factors have important impacts on the motion smoothness and dynamic stress. A comparison showed that the trajectory planning approach based on the modified fifth-order B-spline reduced the dynamic stress while improving the motion smoothness. The approach proposed in this work can also be applied in trajectory planning for other parallel or hybrid robots.

References

1.
Castaneda
,
L. A.
,
Luviano-Juarez
,
A.
, and
Chairez
,
I.
,
2015
, “
Robust Trajectory Tracking of a Delta Robot Through Adaptive Active Disturbance Rejection Control
,”
IEEE Trans. Control Syst. Technol.
,
23
(
4
), pp.
1387
1398
.
2.
Laribi
,
M. A.
,
Romdhane
,
L.
, and
Zeghloul
,
S.
,
2007
, “
Analysis and Dimensional Synthesis of the DELTA Robot for a Prescribed Workspace
,”
Mech. Mach. Theory
,
42
(
7
), pp.
859
870
.
3.
Pierrot
,
F.
,
Nabat
,
V.
,
Company
,
O.
,
Krut
,
S.
, and
Poignet
,
P.
,
2009
, “
Optimal Design of a 4-DOF Parallel Manipulator: From Academia to Industry
,”
IEEE Trans. Robot.
,
25
(
2
), pp.
213
224
.
4.
Huang
,
T.
,
Li
,
Z. X.
,
Li
,
M.
,
Chetwynd
,
D. G.
, and
Gosselin
,
C. M.
,
1988
, “
Conceptual Design and Dimensional Synthesis of a Novel 2-DOF Translational Parallel Robot for Pick-and-Place Operations
,”
ASME J. Mech. Des.
,
126
(
3
), pp.
449
455
.
5.
Szep
,
C.
,
Stan
,
S. D.
, and
Csibi
,
V.
,
2011
, “
Design, Workspace Analysis and Inverse Kinematics Problem of Delta Parallel Robot
,”
Mechanika
,
17
(
3
), pp.
296
299
.
6.
Carabin
,
G.
,
Scalera
,
L.
,
Wongratanaphisan
,
T.
, and
Vidoni
,
R.
,
2021
, “
An Energy-Efficient Approach for 3D Printing With a Linear Delta Robot Equipped With Optimal Springs
,”
Robot. Comput. Integr. Manuf.
,
67
, pp.
1
14
.
7.
Scalera
,
L.
,
Carabin
,
G.
,
Vidoni
,
R.
, and
Wongratanaphisan
,
T.
,
2019
, “
Energy Efficiency in a 4-DOF Parallel Robot Featuring Compliant Elements
,”
Int. J. Mech. Control
,
20
(
2
), pp.
49
57
.
8.
Li
,
Y. H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2018
, “
An Approach for Smooth Trajectory Planning of High-Speed Pick-and-Place Parallel Robots Using Quintic B-Splines
,”
Mech. Mach. Theory
,
126
, pp.
479
490
.
9.
Pellicciari
,
M.
,
Berselli
,
G.
,
Leali
,
F.
, and
Vergnano
,
A.
,
2013
, “
A Method for Reducing the Energy Consumption of Pick-and-Place Industrial Robots
,”
Mechatronics
,
23
(
3
), pp.
326
334
.
10.
Korayem
,
M. H.
,
Esfeden
,
R. A.
, and
Nekoo
,
S. R.
,
2015
, “
Path Planning Algorithm in Wheeled Mobile Manipulators Based on Motion of Arms
,”
J. Mech. Sci. Technol.
,
29
(
4
), pp.
1753
1763
.
11.
Li
,
H. Z.
,
Le
,
M. D.
,
Gong
,
Z. M.
, and
Lin
,
W.
,
2009
, “
Motion Profile Design to Reduce Residual Vibration of High-Speed Positioning Stages
,”
IEEE/ASME Trans. Mechatron.
,
14
(
2
), pp.
264
269
.
12.
Zha
,
X. F.
,
2002
, “
Optimal Pose Trajectory Planning for Robot Manipulators
,”
Mech. Mach. Theory
,
37
(
10
), pp.
1063
1086
.
13.
Menon
,
M. S.
,
Ravi
,
V. C.
, and
Ghosal
,
A.
,
2017
, “
Trajectory Planning and Obstacle Avoidance for Hyper-Redundant Serial Robots
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041010
.
14.
Gasparetto
,
A.
, and
Zanotto
,
V.
,
2008
, “
A Technique for Time-Jerk Optimal Planning of Robot Trajectories
,”
Robot. Comput. Integr. Manuf.
,
24
(
3
), pp.
415
426
.
15.
Zhang
,
T.
,
Zhang
,
M. H.
, and
Zou
,
Y. B.
,
2021
, “
Time-Optimal and Smooth Trajectory Planning for Robot Manipulators
,”
Int. J. Control Autom. Syst.
,
19
(
1
), pp.
521
531
.
16.
Fang
,
Y.
,
Qi
,
J.
,
Hu
,
J.
,
Wang
,
W.
, and
Peng
,
Y.
,
2020
, “
An Approach for Jerk-Continuous Trajectory Generation of Robotic Manipulators With Kinematical Constraints
,”
Mech. Mach. Theory
,
153
, pp.
1
22
.
17.
Zhang
,
S.
,
Zanchettin
,
A. M.
,
Villa
,
R.
, and
Dai
,
S.
,
2020
, “
Real-Time Trajectory Planning Based on Joint-Decoupled Optimization in Human–Robot Interaction
,”
Mech. Mach. Theory
,
144
, pp.
1
22
.
18.
Cui
,
L.
,
Wang
,
H.
, and
Chen
,
W.
,
2020
, “
Trajectory Planning of a Spatial Flexible Manipulator for Vibration Suppression
,”
Robot. Auton. Syst.
,
123
(
6
), p.
103316
.
19.
Chen
,
D.
,
Li
,
S.
,
Wang
,
J.
,
Feng
,
Y.
, and
Liu
,
Y.
,
2019
, “
A Multi-Objective Trajectory Planning Method Based on the Improved Immune Clonal Selection Algorithm
,”
Robot. Comput. Integr. Manuf.
,
59
, pp.
431
442
.
20.
Su
,
T.
,
Cheng
,
L.
,
Wang
,
Y.
,
Liang
,
X.
,
Zheng
,
J.
, and
Zhang
,
H.
,
2018
, “
Time-Optimal Trajectory Planning for Delta Robot Based on Quintic Pythagorean-Hodograph Curves
,”
IEEE Access
,
6
, pp.
28530
28539
.
21.
Macfarlane
,
S.
, and
Croft
,
E. A.
,
2003
, “
Jerk-Bounded Manipulator Trajectory Planning Design for Real-Time Application
,”
IEEE Trans. Robot. Autom.
,
19
(
1
), pp.
42
52
.
22.
Wang
,
H.
,
Heng
,
W.
,
Huang
,
J. H.
,
Zhao
,
B.
, and
Quan
,
L.
,
2019
, “
Smooth Point-to-Point Trajectory Planning for Industrial Robots With Kinematical Constraints Based on High-Order Polynomial Curve
,”
Mech. Mach. Theory
,
139
, pp.
284
293
.
23.
Fang
,
Y.
,
Hu
,
J.
,
Liu
,
W. H.
,
Shao
,
Q. Q.
,
Qi
,
J.
, and
Peng
,
Y. H.
,
2019
, “
Smooth and Time-Optimal S-Curve Trajectory Planning for Automated Robots and Machines
,”
Mech. Mach. Theory
,
137
, pp.
127
153
.
24.
Shen
,
X.
,
Xie
,
F. G.
,
Liu
,
X. J.
, and
Xie
,
Z. H.
,
2021
, “
A Smooth and Undistorted Toolpath Interpolation Method for 5-D0F Parallel Kinematic Machines
,”
Robot. Comput. Integr. Manuf.
,
57
, pp.
347
356
.
25.
Abe
,
A.
,
2009
, “
Trajectory Planning for Residual Vibration Suppression of a Two-Link Rigid-Flexible Manipulator Considering Large Deformation
,”
Mech. Mach. Theory
,
44
(
9
), pp.
1627
1639
.
26.
Dinçer
,
Ü.
, and
Çevik
,
M.
,
2019
, “
Improved Trajectory Planning of an Industrial Parallel Mechanism by a Composite Polynomial Consisting of Bézier Curves and Cubic Polynomials
,”
Mech. Mach. Theory
,
132
, pp.
248
263
.
27.
Liu
,
X.
,
Qiu
,
C.
,
Zeng
,
Q.
,
Li
,
A.
, and
Xie
,
N.
,
2020
, “
Time-Energy Optimal Trajectory Planning for Collaborative Welding Robot With Multiple Manipulators
,”
Procedia Manuf.
,
43
, pp.
527
534
.
28.
Korayem
,
M. H.
, and
Nikoobin
,
A.
,
2009
, “
Maximum Payload Path Planning for Redundant Manipulator Using Indirect Solution of Optimal Control Problem
,”
Int. J. Adv. Manuf. Technol.
,
44
(
7–8
), pp.
725
736
.
29.
Ghariblu
,
H.
, and
Korayem
,
M. H.
,
2006
, “
Trajectory Optimization of Flexible Mobile Manipulators
,”
Robotica
,
24
(
3
), pp.
333
335
.
30.
Li
,
Y. M.
, and
Xu
,
Q. S.
,
2005
, “
Kinematics and Inverse Dynamics Analysis for a General 3-PRS Spatial Parallel Mechanism
,”
Robotica
,
23
(
2
), pp.
219
229
.
31.
Sun
,
T.
,
Lian
,
B. B.
,
Song
,
Y. M.
, and
Feng
,
L.
,
2019
, “
Elasto-Dynamic Optimization of a 5-DoF Parallel Kinematic Machine Considering Parameter Uncertainty
,”
IEEE ASME Trans. Mechatron.
,
24
(
1
), pp.
315
325
.
32.
Wu
,
M. K.
,
Mei
,
J. P.
,
Zhao
,
Y. Q.
, and
Niu
,
W. T.
,
2020
, “
Vibration Reduction of Delta Robot Based on Trajectory Planning
,”
Mech. Mach. Theory
,
153
, pp.
1
15
.
You do not currently have access to this content.