Abstract

Micro positioning systems are popular devices to achieve ultrahigh precision motion. In this paper, a three-degree-of-freedom (3-DOF) flexure-based planar parallel micro manipulator is presented. The existing literature focusing on the modeling of micro manipulator is difficult to fully reflect the real internal physical characteristic in the relationship between the input voltage and output pose. A new comprehensive nonlinear model for a three-DOF flexure-based planar parallel micro manipulator considering the errors of compliant joint in multiple non-functional directions, inherent force, moment, and nonlinear properties of the piezoelectric actuator is proposed. The ideal kinematic model and stiffness model are derived for comparison to verify the comprehensive nonlinear model. The simulation results show that the accuracy of the comprehensive nonlinear model is higher than that of other two models. Finally, the experimental results demonstrate that the average accuracy of the proposed modeling method in the translational direction is 26.35% better than that of the ideal kinematic model. The average accuracy in the rotational direction is 27.49% better than that of the ideal kinematic model. The proposed comprehensive nonlinear model can improve the modeling accuracy. It can be applied to other types of flexure-based micro manipulator.

References

1.
Soto
,
F.
,
Wang
,
J.
,
Ahmed
,
R.
, and
Demirci
,
U.
,
2020
, “
Medical Robotics: Medical Micro/Nanorobots in Precision Medicine
,”
Adv. Sci.
,
7
(
21
), p.
2002203
.
2.
Park
,
W.
,
Pak
,
S.
,
Kim
,
G. H.
,
Lee
,
S.
, and
Kim
,
D. W.
,
2020
, “
Transformable Reflective Telescope for Optical Testing and Education
,”
Appl. Opt.
,
59
(
18
), p.
5581
.
3.
Li
,
L.
,
Huang
,
J.
,
Aphale
,
S. S.
, and
Zhu
,
L. M.
,
2020
, “
A Smoothed Raster Scanning Trajectory Based on Acceleration-Continuous B-Spline Transition for High-Speed Atomic Force Microscopy
,”
IEEE/ASME Trans. Mechatron.
,
26
(
1
), pp.
24
32
.
4.
Ling
,
M.
, and
Zhang
,
X.
,
2021
, “
Coupled Dynamic Modeling of Piezo-Actuated Compliant Mechanisms Subjected to External Loads
,”
Mech. Mach. Theory
,
160
, p.
104283
.
5.
Chen
,
W.
,
Zhang
,
X.
,
Li
,
H.
,
Wei
,
J.
, and
Fatikow
,
S.
,
2017
, “
Nonlinear Analysis and Optimal Design of a Novel Piezoelectric-Driven Compliant Microgripper
,”
Mech. Mach. Theory
,
118
, pp.
32
52
.
6.
Xu
,
Q.
,
2021
, “
Adaptive Integral Terminal Third-Order Finite-Time Sliding-Mode Strategy for Robust Nanopositioning Control
,”
IEEE Trans. Ind. Electron.
,
68
(
7
), pp.
6161
6170
.
7.
Tao
,
Y.
,
Zhu
,
Z.
,
Xu
,
Q.
,
Li
,
H. X.
, and
Zhu
,
L. M.
,
2021
, “
Tracking Control of Nanopositioning Stages Using Parallel Resonant Controllers for High-Speed Nonraster Sequential Scanning
,”
IEEE Trans. Autom. Sci. Eng.
,
18
(
3
), pp.
1218
1228
.
8.
Xu
,
R.
, and
Zhou
,
M.
,
2018
, “
A Self-Adaption Compensation Control for Hysteresis Nonlinearity in Piezo-Actuated Stages Based on Pi-Sigma Fuzzy Neural Network
,”
Smart Mater. Struct.
,
27
(
4
), p.
045002
.
9.
Cai
,
K.
,
Tian
,
Y.
, and
Liu
,
X.
,
2019
, “
Development and Control Methodologies for 2-DOF Micro/Nano Positioning Stage With High Out-of-Plane Payload Capacity
,”
Robot. Comput. Integr. Manuf.
,
56
, pp.
95
105
.
10.
Gao
,
X.
,
Deng
,
J.
,
Zhang
,
S.
,
Li
,
J.
, and
Liu
,
Y.
,
2022
, “
A Compact 2-DOF Micro/Nano Manipulator Using Single Miniature Piezoelectric Tube Actuator
,”
IEEE Trans. Ind. Electron.
,
69
(
4
), pp.
3928
3937
.
11.
Tao
,
Y.
,
Li
,
H.
, and
Zhu
,
L.
,
2021
, “
Time/Space-Separation-Based Gaussian Process Modeling for the Cross-Coupling Effect of a 2-DOF Nanopositioning Stage
,”
IEEE/ASME Trans. Mechatron.
,
26
(
4
), pp.
2186
2194
.
12.
Ghafarian
,
M.
,
Shirinzadeh
,
B.
,
Al-Jodah
,
A.
, and
Das
,
T. K.
,
2020
, “
Adaptive Fuzzy Sliding Mode Control for High-Precision Motion Tracking of a Multi-DOF Micro/Nano Manipulator
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
4313
4320
.
13.
Huang
,
Z.
,
Lai
,
X.
,
Zhang
,
P.
,
Meng
,
Q.
, and
Wu
,
M.
,
2020
, “
A General Control Strategy for Planar 3-DoF Underactuated Manipulators With One Passive Joint
,”
Inf. Sci.
,
534
, pp.
139
153
.
14.
Li
,
Y.
, and
Wu
,
Z.
,
2016
, “
Design, Analysis and Simulation of a Novel 3-DOF Translational Micromanipulator Based on the PRB Model
,”
Mech. Mach. Theory
,
100
, pp.
235
258
.
15.
Yue
,
Y.
,
Feng
,
G.
,
Zhao
,
X.
, and
Ge
,
Q. J.
,
2010
, “
Relationship Among Input-Force, Payload, Stiffness and Displacement of a 3-DOF Perpendicular Parallel Micro-Manipulator
,”
Mech. Mach. Theory
,
45
(
5
), pp.
756
771
.
16.
Bhagat
,
U.
,
Shirinzadeh
,
B.
,
Clark
,
L.
,
Chea
,
P.
,
Qin
,
Y.
,
Tian
,
Y.
, and
Zhang
,
D.
,
2014
, “
Design and Analysis of a Novel Flexure-Based 3-DOF Mechanism
,”
Mech. Mach. Theory
,
74
, pp.
173
187
.
17.
Cai
,
K.
,
Tian
,
Y.
,
Wang
,
F.
,
Zhang
,
D.
, and
Shirinzadeh
,
B.
,
2016
, “
Development of a Piezo-Driven 3-DOF Stage With T-Shape Flexible Hinge Mechanism
,”
Robot. Comput. Integr. Manuf.
,
37
, pp.
125
138
.
18.
Park
,
J.
,
Lee
,
H.
,
Kim
,
H.
, and
Gweon
,
D.
,
2016
, “
Development of a Compact Aperture-Type XYθz Positioning Stage
,”
Rev. Sci. Instrum.
,
87
(
3
), pp.
18
28
.
19.
Dong
,
Y.
,
Gao
,
F.
, and
Yue
,
Y.
,
2016
, “
Modeling and Experimental Study of a Novel 3-RPR Parallel Micro Manipulator
,”
Robot. Comput. Integr. Manuf.
,
37
, pp.
115
124
.
20.
Ling
,
M.
,
Cao
,
J.
, and
Pehrson
,
N.
,
2019
, “
Kinetostatic and Dynamic Analyses of Planar Compliant Mechanisms Via a Two-Port Dynamic Stiffness Model
,”
Precis. Eng.
,
57
, pp.
149
161
.
21.
Yu
,
Y.
,
Feng
,
Z.
, and
Xu
,
Q.
,
2012
, “
A Pseudo-Rigid-Body 2R Model of Flexural Beam in Compliant Mechanisms
,”
Mech. Mach. Theory
,
55
, pp.
18
33
.
22.
Lobontiu
,
N.
, and
Garcia
,
E.
,
2004
, “
Two Microcantilever Designs: Lumped-Parameter Model for Static and Modal Analysis
,”
J. Microelectromech. Syst.
,
13
(
1
), pp.
41
50
.
23.
Li
,
Y.
, and
Xu
,
Q.
,
2009
, “
Modeling and Performance Evaluation of a Flexure-Based XY Parallel Micromanipulator
,”
Mech. Mach. Theory
,
44
(
12
), pp.
2127
2152
.
24.
Yuan
,
Y.
, and
Li
,
Y.
,
2010
, “
Design and Analysis of a Novel 6-DOF Redundant Actuated Parallel Robot With Compliant Hinges for High Precision Positioning
,”
Nonlinear Dyn.
,
61
(
4
), pp.
829
845
.
25.
Fleming
,
A. J.
, and
Yong
,
Y. K.
,
2017
, “
An Ultrathin Monolithic XY Nanopositioning Stage Constructed From a Single Sheet of Piezoelectric Material
,”
IEEE/ASME Trans. Mechatron.
,
22
(
6
), pp.
2611
2618
.
26.
Xu
,
P.
,
Yu
,
J.
,
Zong
,
G.
,
Bi
,
S.
, and
Su
,
H.
,
2009
, “
The Modeling of Cartwheel Flexural Hinges
,”
Mech. Mach. Theory
,
44
(
10
), pp.
1900
1909
.
27.
Kiang
,
C. T.
,
Spowage
,
A.
, and
Yoong
,
C. K.
,
2015
, “
Review of Control and Sensor System of Flexible Manipulator
,”
J. Intell. Robot. Syst.
,
77
(
1
), pp.
187
213
.
28.
Zhu
,
W. L.
,
Zhu
,
Z.
,
To
,
S.
,
Liu
,
Q.
,
Ju
,
B. F.
, and
Zhou
,
X.
,
2016
, “
Redundantly Piezo-Actuated XYθz Compliant Mechanism for Nano-Positioning Featuring Simple Kinematics, Bi-Directional Motion and Enlarged Workspace
,”
Smart Mater. Struct.
,
25
(
12
), p.
125002
.
29.
Kenton
,
B. J.
, and
Leang
,
K. K.
,
2012
, “
Design and Control of a Three-Axis Serial-Kinematic High-Bandwidth Nanopositioner
,”
IEEE/ASME Trans. Mechatron.
,
17
(
2
), pp.
356
369
.
30.
Mishra
,
J. P.
,
Xu
,
Q.
,
Yu
,
X.
, and
Jalili
,
M.
,
2018
, “
Precision Position Tracking for Piezoelectric-Driven Motion System Using Continuous Third-Order Sliding Mode Control
,”
IEEE/ASME Trans. Mechatron.
,
23
(
4
), pp.
1521
1531
.
31.
Lee
,
J.
,
Jin
,
M.
,
Kashiri
,
N.
,
Caldwell
,
D. G.
, and
Tsagarakis
,
N. G.
,
2019
, “
Inversion-Free Force Tracking Control of Piezoelectric Actuators Using Fast Finite-Time Integral Terminal Sliding-Mode
,”
Mechatronics
,
57
, pp.
39
50
.
32.
Qi
,
C. K.
,
Gao
,
F.
,
Li
,
H.-X.
,
Li
,
S.
,
Zhao
,
X.
, and
Dong
,
Y.
,
2015
, “
An Incremental Hammerstein-Like Modeling Approach for the Decoupled Creep, Vibration and Hysteresis Dynamics of Piezoelectric Actuator
,”
Nonlinear Dyn.
,
82
(
4
), pp.
2097
2118
.
33.
Croft
,
D.
,
Shed
,
G.
, and
Devasia
,
S.
,
2001
, “
Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application
,”
ASME J. Dyn. Syst. Meas. Control
,
123
(
1
), pp.
35
43
.
34.
Leang
,
K. K.
,
Zou
,
Q.
, and
Devasia
,
S.
,
2009
, “
Feedforward Control of Piezoactuators in Atomic Force Microscope Systems
,”
IEEE Control Syst. Mag.
,
29
(
1
), pp.
70
82
.
35.
Qi
,
C.
,
Lin
,
J.
,
Wu
,
Y.
, and
Gao
,
F.
,
2021
, “
A Wiener Model Identification for Creep and Vibration Linear and Hysteresis Nonlinear Dynamics of Piezoelectric Actuator
,”
IEEE Sens. J.
,
21
(
24
), pp.
27570
27581
.
You do not currently have access to this content.