Abstract

This paper proposes a new whole-body motion generator for a quadruped-on-wheel robot that can cross various rough terrains, especially with a much-altitude difference. The motion generator combines the kinematics model, the wheel-center motion model, the robot centroidal momentum and dynamics models, and a proposed altitude-control model. Then, the whole-body motion references can be achieved by giving the robot centroidal-motion reference, including the centroidal translational motion in the forward and lateral directions in the inertial frame, and the centroidal-height motion with respect to the base frame. Especially, the relative motion depends only on the robot-self property and is independent of the terrain geometry. The robot is simulated to be driven on various tested rough terrains using our new motion generator and our compliant torque controller.

References

1.
Orin
,
D. E.
, and
Goswami
,
A.
,
2008
, “
Centroidal Momentum Matrix of a Humanoid Robot: Structure and Properties
,”
2008 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Nice, France
,
Sept. 22–26
,
IEEE, pp. 653–659
.
2.
Featherstone
,
R.
,
2008
,
Rigid Body Dynamics Algorithms
,
Springer
,
New York
.
3.
Wensing
,
P. M.
, and
Orin
,
D. E.
,
2016
, “
Improved Computation of the Humanoid Centroidal Dynamics and Application for Whole-Body Control
,”
Int. J. Humanoid Rob.
,
13
(
1
), p.
1550039
.
4.
Orin
,
D. E.
,
Goswami
,
A.
, and
Lee
,
S.-H.
,
2013
, “
Centroidal Dynamics of a Humanoid Robot
,”
Auton. Rob.
,
35
(
2
), pp.
161
176
.
5.
Lee
,
S.-H.
, and
Goswami
,
A.
,
2012
, “
A Momentum-Based Balance Controller for Humanoid Robots on Non-Level and Non-Stationary Ground
,”
Auton. Rob.
,
33
(
4
), pp.
399
414
.
6.
Peng
,
W. Z.
,
Song
,
H.
, and
Kim
,
J. H.
,
2021
, “
Stability Region-Based Analysis of Walking and Push Recovery Control
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031005
.
7.
Du
,
W.
,
Fnadi
,
M.
,
Moullet
,
E.
, and
Benamar
,
F.
,
2021
, “
Leg Centroidal Dynamics Based New Locomotion Principle of a Quadruped Robot With Online Legged Motion Generation
,”
J. Intell. Rob. Syst.
,
103
(
4
), pp.
1
34
.
8.
Lee
,
Y. H.
,
Lee
,
H.
,
Kang
,
H.
,
Lee
,
J. H.
,
Park
,
J. M.
,
Kang
,
C.
,
Lee
,
Y. H.
,
Kim
,
Y. B.
, and
Choi
,
H. R.
,
2021
, “
Balance Recovery Based on Whole-Body Control Using Joint Torque Feedback for Quadrupedal Robots
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
050910
.
9.
Vukobratović
,
M.
, and
Borovac
,
B.
,
2004
, “
Zero-Moment Point—Thirty Five Years of Its Life
,”
Int. J. Humanoid Rob.
,
1
(
1
), pp.
157
173
.
10.
Sardain
,
P.
, and
Bessonnet
,
G.
,
2004
, “
Forces Acting on a Biped Robot. Center of Pressure-Zero Moment Point
,”
IEEE Trans. Syst. Man Cybern. A: Syst. Hum.
,
34
(
5
), pp.
630
637
.
11.
Siegwart
,
R.
,
Lamon
,
P.
,
Estier
,
T.
,
Lauria
,
M.
, and
Piguet
,
R.
,
2002
, “
Innovative Design for Wheeled Locomotion in Rough Terrain
,”
Rob. Auton. Syst.
,
40
(
2–3
), pp.
151
162
.
12.
Grotzinger
,
J. P.
,
Crisp
,
J.
,
Vasavada
,
A. R.
,
Anderson
,
R. C.
,
Baker
,
C. J.
,
Barry
,
R.
,
Blake
,
D. F.
, et al.,
2012
, “
Mars Science Laboratory Mission and Science Investigation
,”
Space Sci. Rev.
,
170
(
1
), pp.
5
56
.
13.
Iagnemma
,
K.
,
Rzepniewski
,
A.
,
Dubowsky
,
S.
, and
Schenker
,
P.
,
2003
, “
Control of Robotic Vehicles With Actively Articulated Suspensions in Rough Terrain
,”
Auton. Rob.
,
14
(
1
), pp.
5
16
.
14.
Halme
,
A.
,
Leppänen
,
I.
,
Suomela
,
J.
,
Ylönen
,
S.
, and
Kettunen
,
I.
,
2003
, “
WorkPartner: Interactive Human-Like Service Robot for Outdoor Applications
,”
Int. J. Rob. Res.
,
22
(
7–8
), pp.
627
640
.
15.
Jun
,
S. K.
,
White
,
G. D.
, and
Krovi
,
V. N.
,
2005
, “
Kinetostatic Design Considerations for an Articulated Leg-Wheel Locomotion Subsystem
,”
ASME J. Dyn. Syst. Meas. Control
,
128
(
1
), pp.
112
121
.
16.
Hauser
,
K.
,
Bretl
,
T.
,
Latombe
,
J.-C.
, and
Wilcox
,
B.
,
2008
, “Motion Planning for a Six-Legged Lunar Robot,”
Algorithmic Foundation of Robotics VII
,
Springer
, pp.
301
316
.
17.
Bouloubasis
,
A. K.
, and
McKee
,
G. T.
,
2007
, “
The Mobility System of the Multi-Tasking Rover (MTR)
,”
Proceedings of the 2007 IEEE International Conference on Robotics and Automation
,
Rome, Italy
,
Apr. 10–14
,
IEEE, pp. 4919–4924
.
18.
Kim
,
R.
,
Madabushi
,
V.
,
Dong
,
E.
, and
Mazumdar
,
A.
,
2021
, “
Increasing Mobile Robot Efficiency and Versatility Through Manipulation-Driven Adaptation
,”
ASME J. Mech. Rob.
,
13
(
5
), p.
050906
.
19.
Grand
,
C.
,
Benamar
,
F.
,
Plumet
,
F.
, and
Bidaud
,
P.
,
2004
, “
Stability and Traction Optimization of a Reconfigurable Wheel-Legged Robot
,”
Int. J. Rob. Res.
,
23
(
10–11
), pp.
1041
1058
.
20.
Wei
,
Z.
,
Song
,
G.
,
Qiao
,
G.
,
Zhang
,
Y.
, and
Sun
,
H.
,
2017
, “
Design and Implementation of a Leg–Wheel Robot: Transleg
,”
ASME J. Mech. Rob.
,
9
(
5
), p.
051001
.
21.
Bouton
,
A.
,
Grand
,
C.
, and
Benamar
,
F.
,
2020
, “
Design and Control of a Compliant Wheel-on-Leg Rover Which Conforms to Uneven Terrain
,”
IEEE/ASME Trans. Mechatron.
,
25
(
5
), pp.
2354
2363
.
22.
Thomson
,
T.
,
Sharf
,
I.
, and
Beckman
,
B.
,
2012
, “
Kinematic Control and Posture Optimization of a Redundantly Actuated Quadruped Robot
,”
2012 IEEE International Conference on Robotics and Automation
,
Saint Paul, MN
,
May 14–18
,
IEEE, pp. 1895–1900
.
23.
Ni
,
L.
,
Ma
,
F.
,
Ge
,
L.
, and
Wu
,
L.
,
2021
, “
Design and Posture Control of a Wheel-Legged Robot With Actively Passively Transformable Suspension System
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
011014
.
24.
Bjelonic
,
M.
,
Bellicoso
,
C. D.
,
de Viragh
,
Y.
,
Sako
,
D.
,
Tresoldi
,
F. D.
,
Jenelten
,
F.
, and
Hutter
,
M.
,
2019
, “
Keep Rollin’—Whole-Body Motion Control and Planning for Wheeled Quadrupedal Robots
,”
IEEE Rob. Autom. Lett.
,
4
(
2
), pp.
2116
2123
.
25.
Suzumura
,
A.
, and
Fujimoto
,
Y.
,
2013
, “
Real-Time Motion Generation and Control Systems for High Wheel-Legged Robot Mobility
,”
IEEE Trans. Ind. Electron.
,
61
(
7
), pp.
3648
3659
.
26.
Nagano
,
K.
, and
Fujimoto
,
Y.
,
2015
, “
The Stable Wheeled Locomotion in Low Speed Region for a Wheel-Legged Mobile Robot
,”
2015 IEEE International Conference on Mechatronics (ICM)
,
Nagoya, Japan
,
Mar. 6–8
,
IEEE, pp. 404–409
.
27.
Kamedula
,
M.
,
Kashiri
,
N.
, and
Tsagarakis
,
N. G.
,
2018
, “
On the Kinematics of Wheeled Motion Control of a Hybrid Wheeled-Legged Centauro Robot
,”
2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Madrid, Spain
,
Oct. 1–5, IEEE, pp. 2426–2433
.
28.
Kameduła
,
M.
,
Kashiri
,
N.
, and
Tsagarakis
,
N. G.
,
2020
, “
Wheeled Motion Kinematics and Control of a Hybrid Mobility CENTAURO Robot
,”
Rob. Auton. Syst.
,
128
, p.
103482
.
29.
Park
,
J.
, and
Khatib
,
O.
,
2006
, “
Contact Consistent Control Framework for Humanoid Robots
,”
Proceedings of the 2006 IEEE International Conference on Robotics and Automation, 2006, ICRA 2006
,
Orlando, FL
,
May 15–19
,
IEEE, pp. 1963–1969
.
30.
Du
,
W.
,
Fnadi
,
M.
, and
Benamar
,
F.
,
2020
, “
Rolling Based Locomotion on Rough Terrain for a Wheeled Quadruped Using Centroidal Dynamics
,”
Mech. Mach. Theory
,
153
, p.
103984
.
31.
Du
,
W.
,
Fnadi
,
M.
, and
Benamar
,
F.
,
2020
, “
Whole-Body Motion Tracking for a Quadruped-on-Wheel Robot Via a Compact-Form Controller With Improved Prioritized Optimization
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
516
523
.
32.
Du
,
W.
,
Fnadi
,
M.
, and
Benamar
,
F.
,
2022
, “
Integration of Prioritized Impedance Controller in Improved Hierarchical Operational-Space Torque Control Frameworks for Legged Locomotion Robots
,”
Multibody Syst. Dyn.
,
54
(
3
), pp.
235
262
.
33.
Siciliano
,
B.
, and
Khatib
,
O.
,
2016
,
Robotics and the Handbook
(
Springer Handbook of Robotics
),
Springer
, pp.
1
6
.
34.
Sentis
,
L.
, and
Khatib
,
O.
,
2005
, “
Synthesis of Whole-Body Behaviors Through Hierarchical Control of Behavioral Primitives
,”
Int. J. Humanoid Rob.
,
2
(
04
), pp.
505
518
.
35.
Fnadi
,
M.
,
Du
,
W.
,
Plumet
,
F.
, and
Benamar
,
F.
,
2021
, “
Constrained Model Predictive Control for Dynamic Path Tracking of a Bi-Steerable Rover on Slippery Grounds
,”
Control Eng. Pract.
,
107
, p.
104693
.
You do not currently have access to this content.