Abstract

This work presents a novel approach for the design and control of a two degrees-of-freedom (DOF) robotic manipulator driven by one pneumatic artificial muscle (PAM) and one passive spring for each of its DOFs. The required air pressure is supplied to the PAMs using fast-switching on/off type pneumatic flow control valves. The proposed control architecture uses a proportional-derivative (PD) controller with a feed-forward term in the outer control loop to correct the position errors using an approximate model of the system dynamics and approximate PAM force-contraction characteristics. An inner pressure regulator loop tracks the reference pressure signals supplied by the outer loop using a pulse width modulation (PWM) scheme to control the pneumatic valves based on the approximated inflation–deflation characteristics for the given pneumatic flow circuit. The proposed controller is unique for PAM actuated robots that simultaneously consider three levels of complications, namely, coupled dynamics of multi-degrees-of-freedom system, non-linearities in the force-contraction characteristics of PAMs, and non-linearities involved in the use of on/off type pneumatic flow control valves. Experiments carried out using a laboratory prototype validate the effectiveness of the proposed control scheme.

References

1.
Ashwin
,
K. P.
, and
Ghosal
,
A.
,
2019
, “
A Soft-Robotic End-Effector for Independently Actuating Endoscopic Catheters
,”
ASME J. Mech. Rob.
,
11
(
6
), p.
061004
.
2.
Markus
,
A. T.
,
Sobczyk
,
M. R.
, and
Perondi
,
E. A.
,
2022
, “
Modeling, Control, and Simulation of a 3-Degrees of Freedom Mechanism Actuated by Pneumatic Artificial Muscles for Upper Limb Prosthesis Application
,”
ASME J. Mech. Rob.
,
15
(
1
), p.
011002
.
3.
Liu
,
Q.
,
Liu
,
Y.
,
Li
,
Y.
,
Zhu
,
C.
,
Meng
,
W.
,
Ai
,
Q.
, and
Xie
,
S. Q.
,
2021
, “
Path Planning and Impedance Control of a Soft Modular Exoskeleton for Coordinated Upper Limb Rehabilitation
,”
Front. Neurorobot.
,
15
(
1
), p.
745531
.
4.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2011
, “
A Survey on Applications of Pneumatic Artificial Muscles
,”
2011 19th Mediterranean Conference on Control & Automation (MED)
,
Corfu, Greece
,
June 20–23
, pp.
1439
1446
.
5.
Andrikopoulos
,
G.
,
Nikolakopoulos
,
G.
, and
Manesis
,
S.
,
2014
, “
Advanced Nonlinear PID-Based Antagonistic Control for Pneumatic Muscle Actuators
,”
IEEE Trans. Ind. Electron.
,
61
(
12
), pp.
6926
6937
.
6.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of Mckibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
(
2
), pp.
15
38
.
7.
Xie
,
S.
,
Mei
,
J.
,
Liu
,
H.
, and
Wang
,
Y.
,
2018
, “
Hysteresis Modeling and Trajectory Tracking Control of the Pneumatic Muscle Actuator Using Modified Prandtl–Ishlinskii Model
,”
Mech. Mach. Theory
,
120
(
1
), pp.
213
224
.
8.
Li
,
S.
,
Meng
,
D.
,
Tang
,
C.
,
Zhong
,
W.
, and
Li
,
A.
,
2021
, “
Adaptive Robust Precision Motion Control of Single PAM Actuated Servo Systems With Non-local Memory Hysteresis Force Compensation
,”
ISA Trans.
,
112
(
1
), pp.
337
349
.
9.
Noritsugu
,
T.
, and
Tanaka
,
T.
,
1997
, “
Application of Rubber Artificial Muscle Manipulator as a Rehabilitation Robot
,”
IEEE/ASME Trans. Mechatron.
,
2
(
4
), pp.
259
267
.
10.
Tondu
,
B.
,
Ippolito
,
S.
,
Guiochet
,
J.
, and
Daidie
,
A.
,
2005
, “
A Seven-Degrees-of-Freedom Robot-Arm Driven by Pneumatic Artificial Muscles for Humanoid Robots
,”
Int. J. Robot. Res.
,
24
(
4
), pp.
257
274
.
11.
Shen
,
X.
,
2010
, “
Nonlinear Model-Based Control of Pneumatic Artificial Muscle Servo Systems
,”
Control Eng. Pract.
,
18
(
3
), pp.
311
317
.
12.
Khoa
,
L. D.
,
Truong
,
D. Q.
, and
Ahn
,
K. K.
,
2013
, “
Synchronization Controller for a 3-r Planar Parallel Pneumatic Artificial Muscle (PAM) Robot Using Modified Anfis Algorithm
,”
Mechatronics
,
23
(
4
), pp.
462
479
.
13.
Xing
,
K.
,
Huang
,
J.
,
Wang
,
Y.
,
Wu
,
J.
,
Xu
,
Q.
, and
He
,
J.
,
2010
, “
Tracking Control of Pneumatic Artificial Muscle Actuators Based on Sliding Mode and Non-linear Disturbance Observer
,”
IET Control Theory Appl.
,
4
(
10
), pp.
2058
2070
(12).
14.
Zhang
,
D.
,
Zhao
,
X.
, and
Han
,
J.
,
2017
, “
Active Model-Based Control for Pneumatic Artificial Muscle
,”
IEEE Trans. Ind. Electron.
,
64
(
2
), pp.
1686
1695
.
15.
Olson
,
G.
,
Manjarrez
,
H.
,
Adams
,
J. A.
, and
Mengüç
,
Y.
,
2022
, “
Experimentally Identified Models of McKibben Soft Actuators as Primary Movers and Passive Structures
,”
ASME J. Mech. Rob.
,
14
(
1
), p.
011006
.
16.
Ganguly
,
S.
,
Garg
,
A.
,
Pasricha
,
A.
, and
Dwivedy
,
S.
,
2012
, “
Control of Pneumatic Artificial Muscle System Through Experimental Modelling
,”
Mechatronics
,
22
(
8
), pp.
1135
1147
.
17.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of Mckibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
18.
Minh
,
T. V.
,
Tjahjowidodo
,
T.
,
Ramon
,
H.
, and
Van Brussel
,
H.
,
2010
, “
Cascade Position Control of a Single Pneumatic Artificial Musclemass System With Hysteresis Compensation
,”
Mechatronics
,
20
(
3
), pp.
402
414
.
19.
Thanh
,
T. D. C.
, and
Ahn
,
K. K.
,
2006
, “
Nonlinear PID Control to Improve the Control Performance of 2 Axes Pneumatic Artificial Muscle Manipulator Using Neural Network
,”
Mechatronics
,
16
(
9
), pp.
577
587
.
20.
Son
,
N. N.
,
Kien
,
C. V.
, and
Anh
,
H. P. H.
,
2017
, “
A Novel Adaptive Feed-Forward-PID Controller of a Scara Parallel Robot Using Pneumatic Artificial Muscle Actuator Based on Neural Network and Modified Differential Evolution Algorithm
,”
Rob. Auton. Syst.
,
96
(
1
), pp.
65
80
.
21.
Liang
,
D.
,
Sun
,
N.
,
Wu
,
Y.
,
Liu
,
G.
, and
Fang
,
Y.
,
2022
, “
Fuzzy-Sliding Mode Control for Humanoid Arm Robots Actuated by Pneumatic Artificial Muscles With Unidirectional Inputs, Saturations, and Dead Zones
,”
IEEE Trans. Ind. Inform.
,
18
(
5
), pp.
3011
3021
.
22.
Jouppila
,
V. T.
,
Gadsden
,
S. A.
,
Bone
,
G. M.
,
Ellman
,
A. U.
, and
Habibi
,
S. R.
,
2014
, “
Sliding Mode Control of a Pneumatic Muscle Actuator System With a PWM Strategy
,”
Int. J. Fluid Power
,
15
(
1
), pp.
19
31
.
23.
Zhao
,
L.
,
Li
,
Q.
,
Liu
,
B.
, and
Cheng
,
H.
,
2019
, “
Trajectory Tracking Control of a One Degree of Freedom Manipulator Based on a Switched Sliding Mode Controller With a Novel Extended State Observer Framework
,”
IEEE Trans. Syst. Man Cybernet.: Syst.
,
49
(
6
), pp.
1110
1118
.
24.
Ba
,
D. X.
,
Dinh
,
T. Q.
, and
Ahn
,
K. K.
,
2016
, “
An Integrated Intelligent Nonlinear Control Method for a Pneumatic Artificial Muscle
,”
IEEE/ASME Trans. Mechatron.
,
21
(
4
), pp.
1835
1845
.
25.
Robinson
,
R. M.
,
Kothera
,
C. S.
,
Sanner
,
R. M.
, and
Wereley
,
N. M.
,
2016
, “
Nonlinear Control of Robotic Manipulators Driven by Pneumatic Artificial Muscles
,”
IEEE/ASME Trans. Mechatron.
,
21
(
1
), pp.
55
68
.
26.
Liang
,
D.
,
Sun
,
N.
,
Wu
,
Y.
,
Chen
,
Y.
,
Fang
,
Y.
, and
Liu
,
L.
,
2022
, “
Energy-Based Motion Control for Pneumatic Artificial Muscle-Actuated Robots With Experiments
,”
IEEE Trans. Ind. Electron.
,
69
(
7
), pp.
7295
7306
.
27.
Pujana-Arrese
,
A.
,
Mendizabal
,
A.
,
Arenas
,
J.
,
Prestamero
,
R.
, and
Landaluze
,
J.
,
2010
, “
Modelling in Modelica and Position Control of a 1-dof Set-Up Powered by Pneumatic Muscles
,”
Mechatronics
,
20
(
5
), pp.
535
552
.
28.
Craig
,
J. J.
,
2009
,
Introduction to Robotics—Mechanics and Control
, 3rd ed.,
Pearson India
,
Noida, India
, Chapter 6, pp.
174
175
.
29.
Liu
,
G.
,
Sun
,
N.
,
Liang
,
D.
,
Chen
,
Y.
,
Yang
,
T.
, and
Fang
,
Y.
,
2022
, “
Neural Network-Based Adaptive Command Filtering Control for Pneumatic Artificial Muscle Robots With Input Uncertainties
,”
Control Eng. Pract.
,
118
(
1
), p.
104960
.
You do not currently have access to this content.