Abstract

Phonation results from the passively induced oscillation of the vocal folds in the larynx, creating sound waves that are then articulated by the mouth and nose. Patients undergoing laryngectomy have their vocal folds removed and thus must rely on alternative sources of achieving the desired vibration of artificial vocal folds. Existing solutions, such as voice prostheses and the Electrolarynx, are limited by producing sufficient voice quality, for instance. In this paper, we present a mathematical analysis of a physical model of an active vocal fold prosthesis. The inverse dynamical equation of the system will help to understand whether specific types of soft actuators can produce the required force to generate natural phonations. Hence, this is referred to as the active actuation model. We present the analysis to replicate the vowels /a/, /e/, /i/, and /u/ and voice qualities of vocal fry, modal, falsetto, breathy, pressed, and whispery. These characteristics would be required as a first step to design an artificial vocal folds system. Inverse dynamics is used to identify the required forces to change the glottis area and frequencies to achieve sufficient oscillation of artificial vocal folds. Two types of ionic polymer-metal composite (IPMC) actuators are used to assess their ability to produce these forces and the corresponding activation voltages required. The results of our proposed analysis will enable research into the effects of natural phonation and, further, provide the foundational work for the creation of advanced larynx prostheses.

References

1.
Gunderson
,
L. L.
, and
Tepper
,
J. E.
,
2015
,
Clinical Radiation Oncology
,
Elsevier Health Sciences
,
Amsterdam, Netherlands
.
2.
Mirghani
,
H.
,
Mure
,
C.
, and
Mlecnik
,
B.
,
2019
, “
High Immunoscore Is Associated With Good Response to Neo-adjuvant Chemotherapy and Prolonged Survival in Advanced Head and Neck Cancer Patients
,”
Ann. Oncol.
,
30
(
Suppl. 5
), pp.
252
006
.
3.
Larynx 3D model by University of Dundee and BodyParts3D
, for life science, https://sketchfab.com/3d-models/anatomy-of-the-larynx-a00bc73a303c46248db6a13a88b23404. Accessed: February 29, 2022.
4.
Rosen
,
C. A.
, and
Simpson
,
C. B.
,
2008
,
Operative Techniques in Laryngology
,
Springer Science & Business Media
,
Berlin/Heidelberg
.
5.
Li
,
W.
,
Zhaopeng
,
Q.
,
Yijun
,
F.
, and
Haijun
,
N.
,
2018
, “
Design and Preliminary Evaluation of Electrolarynx With F0 Control Based on Capacitive Touch Technology
,”
IEEE Trans. Neural Syst. Rehabil. Eng.
,
26
(
3
), pp.
629
636
.
6.
Verkerke
,
G. J.
, and
Thomson
,
S.
,
2014
, “
Sound-Producing Voice Prostheses: 150 Years of Research
,”
Annu. Rev. Biomed. Eng.
,
16
, pp.
215
245
.
7.
Brownlee
,
B.
,
Ahmad
,
S.
,
Grammer
,
T.
, and
Krempl
,
G.
,
2018
, “
Selective Patient Experience With the Blom-Singer Dual Valve Voice Prosthesis
,”
The Laryngoscope
,
128
(
2
), pp.
422
426
.
8.
Fuchs
,
A. K.
,
Hagmüller
,
M.
, and
Kubin
,
G.
,
2016
, “
The New Bionic Electro-larynx Speech System
,”
IEEE J. Sel. Top. Signal Process.
,
10
(
5
), pp.
952
961
.
9.
Keating
,
P.
, and
Esposito
,
C.
,
2006
, “
Linguistic Voice Quality
,” p.
105
.
10.
Kuang
,
J.
,
2017
, “
Covariation Between Voice Quality and Pitch: Revisiting the Case of Mandarin Creaky Voice
,”
J. Acoust. Soc. Am.
,
142
(
3
), pp.
1693
1706
.
11.
Manti
,
M.
,
Cianchetti
,
M.
,
Nacci
,
A.
,
Ursino
,
F.
, and
Laschi
,
C.
,
2015
, “
A Biorobotic Model of the Human Larynx
,”
2015
37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC)
,
Milan, Italy
,
Aug. 25–29
,
IEEE
, pp.
3623
3626
.
12.
Giannaccini
,
M. E.
,
Hinitt
,
A.
,
Gough
,
E.
,
Stinchcombe
,
A.
, and
Rossiter
,
J.
,
2019
, “
Robotic Simulator of Vocal Fold Paralysis
,”
Conference on Biomimetic and Biohybrid Systems
,
Nara, Japan
,
July 9–12
,
Springer
, pp.
134
145
.
13.
Flanagan
,
J.
, and
Landgraf
,
L.
,
1968
, “
Self-oscillating Source for Vocal-Tract Synthesizers
,”
IEEE Trans. Audio Electroacoust.
,
16
(
1
), pp.
57
64
.
14.
Ishizaka
,
K.
, and
Flanagan
,
J. L.
,
1972
, “
Synthesis of Voiced Sounds From a Two-Mass Model of the Vocal Cords
,”
Bell Syst. Tech. J.
,
51
(
6
), pp.
1233
1268
.
15.
Adachi
,
S.
, and
Yu
,
J.
,
2005
, “
Two-Dimensional Model of Vocal Fold Vibration for Sound Synthesis of Voice and Soprano Singing
,”
J. Acoust. Soc. Am.
,
117
(
5
), pp.
3213
3224
.
16.
Birkholz
,
P.
,
Kröger
,
B. J.
, and
Neuschaefer-Rube
,
C.
,
2011
, “
Articulatory Synthesis of Words in Six Voice Qualities Using a Modified Two-Mass Model of the Vocal Folds
,”
First International Workshop on Performative Speech and Singing Synthesis
, Vancouver, Canada, Mar. 14–15, Vol.
370
.
17.
Story
,
B. H.
, and
Titze
,
I. R.
,
1995
, “
Voice Simulation With a Body-Cover Model of the Vocal Folds
,”
J. Acoust. Soc. Am.
,
97
(
2
), pp.
1249
1260
.
18.
Titze
,
I. R.
,
1973
, “
The Human Vocal Cords: A Mathematical Model
,”
Phonetica
,
28
(
3–4
), pp.
129
170
.
19.
Alipour
,
F.
, and
Titze
,
I.
,
1995
, “
Combined Simulation of Two Dimensional Airflow and Vocal Fold Vibration
,”
Status Progress Report, National Center for Voice Speech
, Vol.
8
, pp.
9
14
.
20.
Eckel
,
H.
,
Sittel
,
C.
,
Zorowka
,
P.
, and
Jerke
,
A.
,
1994
, “
Dimensions of the Laryngeal Framework in Adults
,”
Surgical Radiologic Anatomy
,
16
(
1
), pp.
31
36
.
21.
Kim
,
S.-Y.
,
Han
,
K. D.
, and
Joo
,
Y.-H.
,
2019
, “
Metabolic Syndrome and Incidence of Laryngeal Cancer: A Nationwide Cohort Study
,”
Sci. Rep.
,
9
(
1
), p.
667
.
22.
Boyraz
,
P.
,
Runge
,
G.
, and
Raatz
,
A.
,
2018
, “
An Overview of Novel Actuators for Soft Robotics
,”
Actuators
,
7
(
3
), p. 48.
23.
Shariati
,
A.
,
Shi
,
J.
,
Spurgeon
,
S.
, and
Wurdemann
,
H. A.
,
2021
, “
Dynamic Modelling and Visco-Elastic Parameter Identification of a Fibre-Reinforced Soft Fluidic Elastomer Manipulator
,”
2021
,
IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
,
Prague, Czech Republic
,
Sept. 27–Oct. 1
,
IEEE
, pp.
661
667
.
24.
Shi
,
J.
,
Frantz
,
J. C.
,
Shariati
,
A.
,
Shiva
,
A.
,
Dai
,
J. S.
,
Martins
,
D.
, and
Wurdemann
,
H. A.
,
2021
, “
Screw Theory-Based Stiffness Analysis for a Fluidic-Driven Soft Robotic Manipulator
,”
2021
,
IEEE International Conference on Robotics and Automation (ICRA)
,
Xi'an, China
,
May 30–June 5
,
IEEE
, pp.
11938
11944
.
25.
Jani
,
J. M.
,
Leary
,
M.
,
Subic
,
A.
, and
Gibson
,
M. A.
,
2014
, “
A Review of Shape Memory Alloy Research, Applications and Opportunities
,”
Mater. Design (1980–2015)
,
56
, pp.
1078
1113
.
26.
Jayaneththi
,
V.
,
Aw
,
K.
, and
McDaid
,
A.
,
2020
, “
Nonlinear Displacement Control of Magnetic Material Actuators
,”
Smart Mater. Struct.
,
29
(
3
), p.
035010
.
27.
Feng
,
H.
,
Sun
,
Y.
,
Todd
,
P. A.
, and
Lee
,
H. P.
,
2020
, “
Body Wave Generation for Anguilliform Locomotion Using a Fiber-Reinforced Soft Fluidic Elastomer Actuator Array Toward the Development of the Eel-Inspired Underwater Soft Robot
,”
Soft Robot.
,
7
(
2
), pp.
233
250
.
28.
van Laake
,
L. C.
,
de Vries
,
J.
,
Kani
,
S. M.
, and
Overvelde
,
J. T.
,
2022
, “
A Fluidic Relaxation Oscillator for Reprogrammable Sequential Actuation in Soft Robots
,”
Matter
,
5
(
9
), pp.
2898
2917
.
29.
Franke
,
M.
,
Ehrenhofer
,
A.
,
Lahiri
,
S.
,
Henke
,
E.-F.
,
Wallmersperger
,
T.
, and
Richter
,
A.
,
2020
, “
Dielectric Elastomer Actuator Driven Soft Robotic Structures With Bioinspired Skeletal and Muscular Reinforcement
,”
Frontiers Robot. AI
,
7
, p.
510757
.
30.
Shahinpoor
,
M.
,
2015
,
Ionic Polymer Metal Composites (IPMCs): Smart Multi-functional Materials and Artificial Muscles
, Vol.
2
,
M. Shahinpoor, ed., Royal Society of Chemistry
,
London
.
31.
Shahinpoor
,
M.
, and
Kim
,
K. J.
,
2001
, “Design, Development, and Testing of a Multifingered Heart Compression/Assist Device Equipped With IPMC Artificial Muscles,”
Smart Structures and Materials 2001: Electroactive Polymer Actuators and Devices
, Vol.
4329
,
International Society for Optics and Photonics
, pp.
411
420
.
32.
Biswal
,
D. K.
,
Bandopadhya
,
D.
, and
Dwivedy
,
S. K.
,
2013
, “
Investigation and Evaluation of Effect of Dehydration on Vibration Characteristics of Silver-Electroded Ionic Polymer–Metal Composite Actuator
,”
J. Intell. Mater. Syst. Struct.
,
24
(
10
), pp.
1197
1212
.
33.
Vokoun
,
D.
,
He
,
Q.
,
Heller
,
L.
,
Yu
,
M.
, and
Dai
,
Z.
,
2015
, “
Modeling of IPNC Cantilever’s Displacements and Blocking Forces
,”
J. Bionic Eng.
,
12
(
1
), pp.
142
151
.
34.
Yılmaz
,
O. C.
,
Sen
,
I.
,
Gurses
,
B. O.
, and
Altinkaya
,
E.
,
2019
, “
The Effect of Gold Electrode Thicknesses on Electromechanical Performance of Nafion-Based Ionic Polymer Metal Composite Actuators
,”
Composites Part B: Eng.
,
165
, pp.
747
753
.
35.
Bonomo
,
C.
,
Fortuna
,
L.
,
Giannone
,
P.
, and
Graziani
,
S.
,
2006
, “
A Circuit to Model the Electrical Behavior of an Ionic Polymer-metal Composite
,”
IEEE Trans. Circuits Syst. I: Reg. Pap.
,
53
(
2
), pp.
338
350
.
36.
Hao
,
L.
,
Sun
,
Z.
,
Li
,
Z.
,
Su
,
Y.
, and
Gao
,
J.
,
2012
, “
A Novel Adaptive Force Control Method for Ipmc Manipulation
,”
Smart Mater. Struct.
,
21
(
7
), p.
075016
.
37.
Luqman
,
M.
,
Lee
,
J.-W.
,
Moon
,
K.-K.
, and
Yoo
,
Y.-T.
,
2011
, “
Sulfonated Polystyrene-Based Ionic Polymer–metal Composite (IPMC) Actuator
,”
J. Ind. Eng. Chem.
,
17
(
1
), pp.
49
55
.
38.
Hubbard
,
J. J.
,
Fleming
,
M.
,
Palmre
,
V.
,
Pugal
,
D.
,
Kim
,
K. J.
, and
Leang
,
K. K.
,
2013
, “
Monolithic IPMC Fins for Propulsion and Maneuvering in Bioinspired Underwater Robotics
,”
IEEE J. Oceanic Eng.
,
39
(
3
), pp.
540
551
.
39.
Shariati
,
A.
,
Meghdari
,
A.
, and
Shariati
,
P.
,
2008
, “Intelligent Control of an IPMC Actuated Manipulator Using Emotional Learning-Based Controller,”
Metamaterials: Fundamentals and Applications
, Vol.
7029
, M. A. Noginov, N. I. Zheludev, A. D. Boardman and N. Engheta, eds.,
International Society for Optics and Photonics
, pp.
164
174
.
40.
Griffiths
,
D. J.
,
2008
, “
Development of Ionic Polymer Metallic Composites as Sensors
,”
Ph.D. thesis
,
Virginia Tech
.
41.
Bonomo
,
C.
,
Fortuna
,
L.
,
Giannone
,
P.
,
Graziani
,
S.
, and
Strazzeri
,
S.
,
2006
, “
A Model for Ionic Polymer Metal Composites As Sensors
,”
Smart Mater. Struct.
,
15
(
3
), p.
749
.
42.
Ma
,
S.
,
Zhang
,
Y.
, and
Liang
,
Y.
,
2019
, “
High-Performance Ionic-Polymer–Metal Composite: Toward Large-Deformation Fast-Response Artificial Muscles
,”
Adv. Funct. Mater.
,
30
, p.
1908508
.
You do not currently have access to this content.