Abstract

In this article, a robust attitude controller design for an uncommon quadrotor aerial vehicle is discussed. This aerial vehicle is designed to have two big rotors on the longitudinal axis to increase the lift capacity and flight endurance, and two small tilt rotors on the lateral axis to stabilize the attitude. Similar to other multirotors, linearization of the full nonlinear model and using an appropriate rotor mixing matrix give the approximate diagonal attitude model of this quadrotor around hover. However, this ideal model lacks sensor delays, uncertain parameters, flexible modes of a structure, and inexact decoupling dynamics. Therefore, using this model in the control design limits the achievable attitude control performance. Unlike most studies, a system identification method is applied to estimate a more accurate model and increase the resulting attitude control performance. The aim of this paper is to obtain a suitable nominal model with accompanying uncertainty using robust control criterion in the system identification. In this way, an uncertain model that gives high performance in the subsequent robust control design is obtained. The experimental results show that this combined identification and robust control procedure improves attitude control performance compared to existing classical controller design methods.

References

1.
Quan
,
Q.
,
2017
,
Introduction to Multicopter Design and Control
,
Springer
,
Singapore
.
2.
Mulgaonkar
,
Y.
,
Whitzer
,
M.
,
Morgan
,
B.
,
Kroninger
,
C. M.
,
Harrington
,
A. M.
, and
Kumar
,
V.
,
2014
, “
Power and Weight Considerations in Small, Agile Quadrotors
,”
SPIE Defense + Security
,
Baltimore, MD
.
3.
Driessens
,
S.
, and
Pounds
,
P.
,
2015
, “
The Triangular Quadrotor: A More Efficient Quadrotor Configuration
,”
IEEE Trans. Rob.
,
31
(
6
), pp.
1517
1526
.
4.
Qin
,
Y.
,
Xu
,
W.
,
Lee
,
A.
, and
Zhang
,
F.
,
2020
, “
Gemini: A Compact Yet Efficient Bi-Copter UAV for Indoor Applications
,”
IEEE Rob. Autom. Lett.
,
5
(
2
), pp.
3213
3220
.
5.
Kim
,
T.
, and
Hong
,
S.
,
2017
, “
Control System Design and Experimental Validation of Hybrid Multicopter for Endurance Enhancement
,”
Asia-Pacific J. Model. Simul. Mech. Syst. Des. Anal.
,
2
(
1
), pp.
15
20
.
6.
Pang
,
T.
,
Peng
,
K.
,
Lin
,
F.
, and
Chen
,
B. M.
,
2016
, “
Towards Long-Endurance Flight: Design and Implementation of a Variable-Pitch Gasoline-Engine Quadrotor
,”
2016 12th IEEE International Conference on Control and Automation (ICCA)
,
Kathmandu, Nepal
,
June 1–3
, IEEE, pp.
767
772
.
7.
Haus
,
T.
,
Orsag
,
M.
, and
Bogdan
,
S.
,
2016
, “
Design Considerations for a Large Quadrotor Wmoving Mass Control
,”
2016 International Conference on Unmanned Aircraft Systems (ICUAS)
,
Arlington, VA
,
June 7–10
, IEEE, pp.
1327
1334
.
8.
Zhang
,
Q.
,
Liu
,
Z.
,
Zhao
,
J.
, and
Zhang
,
S.
,
2016
, “
Modeling and Attitude Control of Bi-Copter
,”
2016 IEEE International Conference on Aircraft Utility Systems (AUS)
,
Beijing, China
,
Oct. 10–12
, IEEE, pp.
172
176
.
9.
Bondyra
,
A.
,
Gardecki
,
S.
,
Gasior
,
P.
, and
Giernacki
,
W.
,
2016
, “
Performance of Coaxial Propulsion in Design of Multi-Rotor UAVS
,”
International Conference on Automation
,
Warsaw, Poland
,
May 20–21
, Springer, pp.
523
531
.
10.
Özdoğan
,
G.
, and
Leblebicioğlu
,
K.
,
2022
, “
Design, Modeling, and Control Allocation of a Heavy-Lift Aerial Vehicle Consisting of Large Fixed Rotors and Small Tiltrotors
,”
IEEE/ASME Trans. Mechatron.
,
27
(
5
), pp.
4011
4021
.
11.
Labbadi
,
M.
, and
Cherkaoui
,
M.
,
2019
, “
Robust Adaptive Backstepping Fast Terminal Sliding Mode Controller for Uncertain Quadrotor UAV
,”
Aerosp. Sci. Technol.
,
93
, p.
105306
.
12.
Raffo
,
G. V.
,
Ortega
,
M. G.
, and
Rubio
,
F. R.
,
2010
, “
An Integral Predictive/Nonlinear h Control Structure for a Quadrotor Helicopter
,”
Automatica
,
46
(
1
), pp.
29
39
.
13.
Grauer
,
J. A.
, and
Boucher
,
M. J.
,
2020
, “
Aircraft System Identification From Multisine Inputs and Frequency Responses
,”
J. Guid. Control Dyn.
,
43
(
12
), pp.
2391
2398
.
14.
Wei
,
W.
,
Tischler
,
M. B.
, and
Cohen
,
K.
,
2017
, “
System Identification and Controller Optimization of a Quadrotor Unmanned Aerial Vehicle in Hover
,”
J. Am. Helicopter Soc.
,
62
(
4
), pp.
1
9
.
15.
Ivler
,
C. M.
,
Rowe
,
E. S.
,
Martin
,
J.
,
Lopez
,
M. J.
, and
Tischler
,
M. B.
,
2021
, “
System Identification Guidance for Multirotor Aircraft: Dynamic Scaling and Test Techniques
,”
J. Am. Helicopter Soc.
,
66
(
2
), pp.
1
16
.
16.
Oomen
,
T.
, and
Bosgra
,
O.
,
2012
, “
System Identification for Achieving Robust Performance
,”
Automatica
,
48
(
9
), pp.
1975
1987
.
17.
Oomen
,
T.
,
van Herpen
,
R.
,
Quist
,
S.
,
van de Wal
,
M.
,
Bosgra
,
O.
, and
Steinbuch
,
M.
,
2014
, “
Connecting System Identification and Robust Control for Next-Generation Motion Control of a Wafer Stage
,”
IEEE Trans. Control Syst. Technol.
,
22
(
1
), pp.
102
118
.
18.
Baskın
,
M.
, and
Leblebicioğlu
,
K.
,
2021
, “
Combined System Identification and Robust Control of a Gimbal Platform
,”
Turkish J. Elect. Eng. Comput. Sci.
,
29
(
4
), pp.
2247
2262
.
19.
Oomen
,
T.
, and
Bosgra
,
O.
,
2009
, “
Well-Posed Model Uncertainty Estimation by Design of Validation Experiments
,”
IFAC Proc. Vol.
,
42
(
10
), pp.
1199
1204
.
20.
Skogestad
,
S.
, and
Postlethwaite
,
I.
,
2007
,
Multivariable Feedback Control: Analysis and Design
, Vol. 2,
Wiley
,
New York
.
21.
Baskın
,
M.
, and
Leblebicioğlu
,
K.
,
2022
, “
Frequency-Domain Estimation of a Transfer Matrix of an Uncommon Quadrotor in Hover
,”
IEEE Trans. Control Syst. Technol.
, early access.
22.
Baskın
,
M.
, and
Leblebicioğlu
,
K.
,
2022
, “
Determining Allowable Parametric Uncertainty in an Uncommon Quadrotor Model for Closed Loop Stability
,”
Turkish J. Elect. Eng. Comput. Sci.
,
30
(
3
), pp.
695
712
.
23.
McFarlane
,
D.
, and
Glover
,
K.
,
1992
, “
A Loop-Shaping Design Procedure Using h Synthesis
,”
IEEE Trans. Autom. Contr.
,
37
(
6
), pp.
759
769
.
24.
Van de Wal
,
M.
,
van Baars
,
G.
,
Sperling
,
F.
, and
Bosgra
,
O.
,
2002
, “
Multivariable h/μ Feedback Control Design for High-Precision Wafer Stage Motion
,”
Control Eng. Pract.
,
10
(
7
), pp.
739
755
.
25.
Van Den Hof
,
P. M.
, and
Schrama
,
R. J.
,
1995
, “
Identification and Control—Closed-Loop Issues
,”
Automatica
,
31
(
12
), pp.
1751
1770
.
26.
Pintelon
,
R.
, and
Schoukens
,
J.
,
2012
,
System Identification: A Frequency Domain Approach
,
Wiley-IEEE Press
,
New York
.
27.
Baskın
,
M.
,
2021
,
“Flight Control System Design of an Uncommon Quadrotor Aerial Vehicle
,” Ph.D. thesis,
Middle East Technical University
,
Ankara
.
28.
Oomen
,
T.
,
Quist
,
S.
,
van Herpen
,
R.
, and
Bosgra
,
O.
,
2010
, “
Identification and Visualization of Robust-Control-Relevant Model Sets With Application to an Industrial Wafer Stage
,”
49th IEEE Conference on Decision and Control (CDC)
,
Atlanta, GA
,
Dec. 15–17
, IEEE, pp.
5530
5535
.
You do not currently have access to this content.