Abstract

Kinematic redundancy can be exploited to improve the performance of parallel mechanisms. Nevertheless, motion planning and control of kinematically redundant parallel mechanisms (KRPMs) are the challenging problems. In this research, a novel class of KRPMs with a reconfigurable platform is introduced. The dynamic equations of motion are derived. Then, a neural network approach is used for the motion planning of a manipulator in the new class. The multilayer perceptron-based neural network (MLP) is used for training data. The results show that the method can be implemented online for the control of the mechanism. Also, since the platform is reconfigurable, the introduced mechanisms can be used for grasping irregular objects. The motion of the mechanism is simulated for singularity avoidance and grasping.

References

1.
Luces
,
M.
,
Mills
,
J. K.
, and
Benhabib
,
B.
,
2017
, “
A Review of Redundant Parallel Kinematic Mechanisms
,”
J. Intell. Robot. Syst.
,
86
(
2
), pp.
175
198
.
2.
Arsenault
,
M.
,
Boudreau
,
R. A.
, and
Nokleby
,
S. B.
,
2021
, “
Computation of the Available Force Set of a 3-RPRR Kinematically-Redundant Planar Parallel Manipulator
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061014
.
3.
Boudreau
,
R.
,
Nokleby
,
S.
, and
Gallant
,
M.
,
2021
, “
Wrench Capabilities of a Kinematically Redundant Planar Parallel Manipulator
,”
Robotica
,
39
(
9
), pp.
1601
1616
.
4.
Ebrahimi
,
I.
,
Carretero
,
J.
, and
Boudreau
,
R.
,
2007
, “
The 3-RPRR Kinematically Redundant Planar Parallel Manipulator
,”
The 2007 CCToMM Symposium on Mechanisms, Machines, and Mechatronics
,
St.-Hubert, QC, Canada
,
May 31–June 1
.
5.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2018
, “
Redundancy in Parallel Mechanisms: A Review
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010802
.
6.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2008
, “
A Family of Kinematically Redundant Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
130
(
6
), p.
062306
.
7.
Heiran
,
F.
,
Abadi
,
B. N. R.
,
Taghvaei
,
S.
, and
Vatankhah
,
R.
,
2017
, “
Kinematics and Workspace Analysis of a Novel Parallel Mechanism With Kinematic Redundancy
,”
Proceedings of the 5th International Conference on Control, Instrumentation, and Automation (ICCIA)
,
Iran
,
Nov. 21–23
.
8.
Gosselin
,
C.
, and
Schreiber
,
L.-T.
,
2016
, “
Kinematically Redundant Spatial Parallel Mechanisms for Singularity Avoidance and Large Orientational Workspace
,”
IEEE Trans. Robot.
,
32
(
2
), pp.
286
300
.
9.
Isaksson
,
M.
,
2017
, “
Kinematically Redundant Planar Parallel Mechanisms for Optimal Singularity Avoidance
,”
ASME J. Mech. Des.
,
139
(
4
), p.
042302
.
10.
Qu
,
H.
,
Hu
,
L.
, and
Guo
,
S.
,
2020
, “
Singularity Analysis and Avoidance of a Planar Parallel Mechanism With Kinematic Redundancy Under a Fixed Orientation
,”
Proc. Inst. Mech. Eng., Part C
,
235
(
18
), pp.
3534
3553
.
11.
Mohamed
,
M. G.
, and
Gosselin
,
C. M.
,
2005
, “
Design and Analysis of Kinematically Redundant Parallel Manipulators With Configurable Platforms
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
277
287
.
12.
Lambert
,
P.
, and
Herder
,
J. L.
,
2016
, “
Parallel Robots With Configurable Platforms: Fundamental Aspects of a new Class of Robotic Architectures
,”
Proc. Inst. Mech. Eng., Part C
,
230
(
3
), pp.
463
472
.
13.
Tian
,
C.
, and
Zhang
,
D.
,
2021
, “
Design and Analysis of Novel Kinematically Redundant Reconfigurable Generalized Parallel Manipulators
,”
Mech. Mach. Theory
,
166
, p.
104481
.
14.
Wen
,
K.
, and
Gosselin
,
C.
,
2021
, “
Static Model Based Grasping Force Control of Parallel Grasping Robots With Partial Cartesian Force Measurement
,”
IEEE/ASME Trans. Mechatron.
,
27
(
2
), pp.
999
1010
.
15.
Baron
,
N.
,
Philippides
,
A.
, and
Rojas
,
N.
,
2021
, “
A Dynamically Balanced Kinematically Redundant Planar Parallel Robot
,”
ASME J. Mech. Des.
,
143
(
8
), p.
083301
.
16.
Cha
,
S.-H.
,
Lasky
,
T. A.
, and
Velinsky
,
S. A.
,
2007
, “
Kinematically-Redundant Variations of the 3-R RR Mechanism and Local Optimization-Based Singularity Avoidance
,”
Mech. Based Des. Struct. Mach.
,
35
(
1
), pp.
15
38
.
17.
Cha
,
S.-H.
,
Lasky
,
T.
, and
Velinsky
,
S.
,
2009
, “
Determination of the Kinematically Redundant Active Prismatic Joint Variable Ranges of a Planar Parallel Mechanism for Singularity-Free Trajectories
,”
Mech. Mach. Theory
,
44
(
5
), pp.
1032
1044
.
18.
Ebrahimi
,
I.
,
Carretero
,
J. A.
, and
Boudreau
,
R.
,
2008
, “
Kinematic Analysis and Path Planning of a new Kinematically Redundant Planar Parallel Manipulator
,”
Robotica
,
26
(
3
), pp.
405
413
.
19.
Carretero
,
J. A.
,
Ebrahimi
,
I.
, and
Boudreau
,
R.
,
2012
, “
Overall Motion Planning for Kinematically Redundant Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
2
), p.
024502
.
20.
Carretero
,
J. A.
,
Ebrahimi
,
I.
, and
Boudreau
,
R.
,
2008
, “
A Comparison Between Two Motion Planning Strategies for Kinematically Redundant Parallel Manipulators
,”
Advances in Robot Kinematics: Analysis and Design
,
J.
Lenarčič
, and
P.
Wenger
, eds.,
Springer
,
New York
, pp.
243
252
.
21.
Kotlarski
,
J.
,
Do Thanh
,
T.
,
Heimann
,
B.
, and
Ortmaier
,
T.
, “
Optimization Strategies for Additional Actuators of Kinematically Redundant Parallel Kinematic Machines
,”
Proceedings of the 2010 IEEE International Conference on Robotics and Automation
,
Anchorage, AK
,
May 3–7
, IEEE, pp.
656
661
.
22.
Ruggiu
,
M.
, and
Carretero
,
J. A.
,
2010
, “Actuation Strategy Based on the Acceleration Model for the 3-PRPR Redundant Planar Parallel Manipulator,”
Advances in Robot Kinematics: Motion in Man and Machine
,
J.
Lenarčič
, and
M.
Stanisic
, eds.,
Springer
,
New York
, pp.
91
98
.
23.
Abadi
,
B. N. R.
,
Taghvaei
,
S.
, and
Vatankhah
,
R.
,
2016
, “
Optimal Motion Planning of a Planar Parallel Manipulator With Kinematically Redundant Degrees of Freedom
,”
Trans. Can. Soc. Mech. Eng.
,
40
(
3
), pp.
383
397
.
24.
Abadi
,
B. N. R.
,
Mahzoon
,
M.
, and
Farid
,
M.
,
2019
, “
Singularity-Free Trajectory Planning of a 3-RP RR Planar Kinematically Redundant Parallel Mechanism for Minimum Actuating Effort
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
43
(
4
), pp.
739
751
.
25.
Boudreau
,
R.
, and
Nokleby
,
S.
,
2012
, “
Force Optimization of Kinematically-Redundant Planar Parallel Manipulators Following a Desired Trajectory
,”
Mech. Mach. Theory
,
56
, pp.
138
155
.
26.
Abadi
,
B. N. R.
,
Farid
,
M.
, and
Mahzoon
,
M.
,
2019
, “
Redundancy Resolution and Control of a Novel Spatial Parallel Mechanism With Kinematic Redundancy
,”
Mech. Mach. Theory
,
133
, pp.
112
126
.
27.
Cavacanti Santos
,
J.
, and
Martins da Silva
,
M.
,
2017
, “
Redundancy Resolution of Kinematically Redundant Parallel Manipulators via Differential Dynamic Programing
,”
ASME J. Mech. Rob.
,
9
(
4
), p.
041016
.
28.
Shabana
,
A. A.
,
2010
,
Computational Dynamics
, 3rd ed.,
Wiley
,
New York
.
29.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Rob. Autom.
,
6
(
3
), pp.
281
290
.
30.
Jain
,
A. K.
,
Mao
,
J.
, and
Mohiuddin
,
K. M.
,
1996
, “
Artificial Neural Networks: A Tutorial
,”
Computer
,
29
(
3
), pp.
31
44
.
31.
Hunt
,
K. J.
,
Sbarbaro
,
D.
,
Żbikowski
,
R.
, and
Gawthrop
,
P. J.
,
1992
, “
Neural Networks for Control Systems—a Survey
,”
Automatica
,
28
(
6
), pp.
1083
1112
.
32.
Medsker
,
L.
,
1994
, “
Design and Development of Hybrid Neural Network and Expert Systems
,”
Proceedings of 1994 IEEE International Conference on Neural Networks (ICNN'94)
,
Orlando, FL
,
June 27–July 2
, IEEE, pp.
1470
1474
.
33.
Pond
,
G.
, and
Carretero
,
J. A.
,
2007
, “
Quantitative Dexterous Workspace Comparison of Parallel Manipulators
,”
Mech. Mach. Theory
,
42
(
10
), pp.
1388
1400
.
You do not currently have access to this content.