Abstract

Design and control of lower extremity robotic prostheses are iterative tasks that would greatly benefit from testing platforms that would autonomously replicate realistic gait conditions. This paper presents the design of a novel mobile 3-degree-of-freedom (DOF) parallel manipulator integrated with a mobile base to emulate human gait for lower limb prosthesis evaluation in the sagittal plane. The integrated mobile base provides a wider workspace range of motion along the gait direction and reduces the requirement of the parallel manipulator’s actuators and links. The parallel manipulator design is optimal to generate the defined gait trajectories with both motion and force requirements using commercially available linear actuators. An integrated active force control with proportional integral derivative (PID) control provided more desirable control compared to traditional PID control in terms of error reduction. The novelty of the work includes the methodology of human data-oriented optimal mechanism design and the concept of a mobile parallel robot to extend the translational workspace of the parallel manipulator with substantially reduced actuator requirements, allowing the evaluation of prostheses in instrumented walkways or integrated with instrumented treadmills.

References

1.
Richter
,
H.
,
Simon
,
D.
,
Smith
,
W. A.
, and
Samorezov
,
S.
,
2015
, “
Dynamic Modeling, Parameter Estimation and Control of a Leg Prosthesis Test Robot
,”
Appl. Math. Model.
,
39
(
2
), pp.
559
573
.
2.
Ficanha
,
E.
,
Dallali
,
H.
, and
Rastgaar
,
M.
, “
Gait Emulator for Evaluation of a Powered Ankle-Foot Prosthesis
,”
ASME 2017 Dynamic Systems and Control Conference
,
Tysons Corner, VA
,
Oct. 11–13
.
3.
Rouse
,
E. J.
,
Hargrove
,
L. J.
,
Peshkin
,
M. A.
, and
Kuiken
,
T. A.
, “
Design and Validation of a Platform Robot for Determination of Ankle Impedance During Ambulation
,”
2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society
,
Boston, MA
,
Aug. 30–Sept. 3
, pp.
8179
8182
.
4.
Nalam
,
V.
, and
Lee
,
H.
,
2019
, “
Development of a Two-Axis Robotic Platform for the Characterization of Two-Dimensional Ankle Mechanics
,”
IEEE ASME Trans. Mechatron.
,
24
(
2
), pp.
459
470
.
5.
Ficanha
,
E. M.
,
Ribeiro
,
G. A.
, and
Rastgaar
,
M.
,
2016
, “
Design and Evaluation of a 2-DOF Instrumented Platform for Estimation of the Ankle Mechanical Impedance in the Sagittal and Frontal Planes
,”
IEEE ASME Trans. Mechatron.
,
21
(
5
), pp.
2531
2542
.
6.
Ficanha
,
E.
,
Ribeiro
,
G. A.
, and
Rastgaar
,
M.
, “
Validation of a 2-DOF Instrumented Vibrating Platform for Estimation of the Time-Varying Impedance of the Ankle
,”
ASME Dynamic Systems and Control Conference (DSCC)
,
Minneapolis, MN
,
July 6–8
.
7.
Dallali
,
H.
,
Knop
,
L.
,
Castelino
,
L.
,
Ficanha
,
E.
, and
Rastgaar
,
M.
,
2017
, “
Estimating the Multivariable Human Ankle Impedance in Dorsi-Plantarflexion and Inversion-Eversion Directions Using EMG Signals and Artificial Neural Networks
,”
Int. J. Intell. Robot. Appl.
,
1
(
1
), pp.
19
31
.
8.
Collins
,
S. H.
,
Kim
,
M.
,
Chen
,
T.
, and
Chen
,
T.
, “
An Ankle-Foot Prosthesis Emulator with Control of Plantarflexion and Inversion-Eversion Torque
,”
2015 IEEE International Conference on Robotics and Automation (ICRA)
,
Seattle, WA
,
May 26–30
, pp.
1210
1216
. http:dx.doi.org/10.1109/ICRA.2015.7139345
9.
Chiu
,
V. L.
,
Voloshina
,
A. S.
, and
Collins
,
S. H.
,
2020
, “
An Ankle-Foot Prosthesis Emulator Capable of Modulating Center of Pressure
,”
IEEE Trans. Biomed. Eng.
,
67
(
1
), pp.
166
176
.
10.
Yul Shin
,
S.
,
Deshpande
,
A. D.
, and
Sulzer
,
J.
,
2018
, “
Design of a Single Degree-of-Freedom, Adaptable Electromechanical Gait Trainer for People With Neurological Injury
,”
J. Mech. Robot.
,
10
(
4
), p.
044503
.
11.
Lee
,
J. Y.
,
2017
,
A Lower-Limb Exoskeleton Emulator to be Employed in Estimation of HIP Impedance in Normal Gait
,
2017 – Mines Theses & Dissertations
, p.
80
.
12.
Hedrick
,
E. A.
,
Malcolm
,
P.
,
Wilken
,
J. M.
, and
Takahashi
,
K. Z.
,
2019
, “
The Effects of Ankle Stiffness on Mechanics and Energetics of Walking With Added Loads: A Prosthetic Emulator Study
,”
J. NeuroEng. Rehabil.
,
16
(
1
), p.
148
.
13.
Alamdari
,
A.
,
Haghighi
,
R.
, and
Krovi
,
V.
,
2018
, “
Stiffness Modulation in an Elastic Articulated-Cable Leg-Orthosis Emulator: Theory and Experiment
,”
IEEE Trans. Robot.
,
34
(
5
), pp.
1266
1279
.
14.
Thatte
,
N.
,
Shah
,
T.
, and
Geyer
,
H.
,
2019
, “
Robust and Adaptive Lower Limb Prosthesis Stance Control via Extended Kalman Filter-Based Gait Phase Estimation
,”
IEEE Robot. Autom. Lett.
,
4
(
4
), pp.
3129
3136
.
15.
Azocar
,
A. F.
,
Mooney
,
L. M.
,
Hargrove
,
L. J.
, and
Rouse
,
E. J.
, “
Design and Characterization of an Open-Source Robotic Leg Prosthesis
,”
2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob)
,
Enschede, The Netherlands
,
Aug. 26–29
, pp.
111
118
.
16.
Patel
,
Y. D.
, and
George
,
P. M.
,
2012
, “
Parallel Manipulators Applications—A Survey
,”
Mod. Mech. Eng.
,
2
(
3
), pp.
57
64
.
17.
Amirat
,
Y.
,
Francois
,
C.
,
Fried
,
G.
,
Pontnau
,
J.
, and
Dafaoui
,
M.
,
1996
, “
Design and Control of a new six DOF Parallel Robot: Application to Equestrian Gait Simulation
,”
Mechatronics
,
6
(
2
), pp.
227
239
.
18.
Chen
,
Y.
, and
Wang
,
W.
,
2018
, “
A Robotic Lift Assister: A Smart Companion for Heavy Payload Transport and Manipulation in Automotive Assembly
,”
IEEE Robot. Autom. Mag.
,
25
(
2
), pp.
107
119
.
19.
Lenarčič
,
J.
, and
Wenger
,
P.
, eds.,
2008
,
Advances in Robot Kinematics: Analysis and Design
,
Springer
,
New York
.
20.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2015
, “
Forward Kinematics Solution Distribution and Analytic Singularity-Free Workspace of Linear-Actuated Symmetrical Spherical Parallel Manipulators
,”
ASME J. Mech. Rob.
,
7
(
4
), p.
041007
.
21.
Gosselin
,
C.
, and
Angeles
,
J.
,
1990
, “
Singularity Analysis of Closed-Loop Kinematic Chains
,”
IEEE Trans. Robot. Autom.
,
6
(
3
), pp.
281
290
.
22.
Joshi
,
S. A.
, and
Tsai
,
L.-W.
,
2002
, “
Jacobian Analysis of Limited-DOF Parallel Manipulators
,”
ASME J. Mech. Des.
,
124
(
2
), pp.
254
258
.
23.
Kong
,
X.
, and
Gosselin
, “
Forward Displacement Analysis Of A Quadratic Planar Parallel Manipulator: 3-Rpr Parallel Manipulator With Similar Triangular Platforms
,”
ASME 2008 International Design Engineering Technical Conferences & Computers and Information in Engineering Conference
,
Brooklyn, NY
,
Aug. 3–6
.
24.
Noshadi
,
A.
,
Mailah
,
M.
, and
Zolfagharian
,
A.
, “
Active Force Control of 3-RRR Planar Parallel Manipulator
,”
2010
,
International Conference on Mechanical and Electrical Technology
,
Singapore
,
Sept. 10–12
, pp.
77
81
.
25.
Honegger
,
M.
,
Codourey
,
A.
, and
Burdet
,
E.
,
1997
, “
Adaptive Control of the Hexaglide, a 6 dof Parallel Manipulator
,”
Proceedings of International Conference on Robotics and Automation
,
Albuquerque, NM
, Apr. 25, Vol. 1, pp.
543
548
. http://dx.doi.org/1109/ROBOT.1997.620093
26.
Xu
,
B.
,
Wang
,
N.
,
Chen
,
T.
, and
Li
,
M.
,
2015
, “
Empirical Evaluation of Rectified Activations in Convolutional Network
.”
ArXiv150500853
Cs Stat, http://arxiv.org/abs/1505.00853 Accessed June 29, 2020.
27.
Byrd
,
R. H.
,
Gilbert
,
J. C.
, and
Nocedal
,
J.
,
2000
, “
A Trust Region Method Based on Interior Point Techniques for Nonlinear Programming
,”
Math. Program.
,
89
(
1
), pp.
149
185
.
28.
Liu
,
X.-J.
,
Wu
,
C.
, and
Wang
,
J.
,
2012
, “
A New Approach for Singularity Analysis and Closeness Measurement to Singularities of Parallel Manipulators
,”
ASME J. Mech. Rob.
,
4
(
4
), p.
041001
.
29.
Shah
,
2018
,
Gradient Descent: Theory [Video]. SAGE Research Methods Video: Data Science
,
Big Data Analytics, and Digital Methods
.
You do not currently have access to this content.