Abstract

This work reports advances in enabling the use of pneumatic artificial muscles (PAM) as an alternative to electromechanical actuators in upper-limb prostheses to take advantage of their low weight, clean, renewable energy source, and force compliance, which is especially suitable for interactions between machines and humans. It describes the model, simulation, and control of a 3-degrees of freedom (DOF) mechanism representing a prosthetic finger using PAM actuators. Its main contribution is the combination and expansion of classic nonlinear models and control methods for robotic systems to allow PAM actuators in the intended application, especially regarding transient effects in the generation of PAM forces. The effectiveness of the proposed mechanism and its associated controller is verified through both numeric simulations and experimental results.

References

1.
Belter
,
J. T.
,
Segil
,
J. L.
,
Dollar
,
A. M.
, and
Weir
,
R. F.
,
2013
, “
Mechanical Design and Performance Specifications of Anthropomorphic Prosthetic Hands: A Review
,”
J. Rehabil. Res. Dev.
,
50
(
5
), pp.
599
618
.
2.
Saliba
,
M. A.
, and
Ellul
,
C.
,
2013
, “
Dexterous Actuation
,”
Mech. Mach. Theory
,
70
, pp.
45
61
.
3.
Controzzi
,
M.
,
Cipriani
,
C.
, and
Carrozza
,
M. C.
,
2014
, “
Design of Artificial Hands: A Review
,”
The Human Hand As an Inspiration for Robot Hand Development (Springer Tracts in Advanced Robotics)
,
R.
Balasubramanian
and
V. J.
Santos
, eds.,
Springer International Publishing
,
Cham
, pp.
219
246
.
4.
Pylatiuk
,
C.
,
Schulz
,
S.
, and
Dôderlein
,
L.
,
2007
, “
Results of an Internet Survey of Myoelectric Prosthetic Hand Users
,”
Prosthet. Orthot. Int.
,
31
(
4
), pp.
362
370
.
5.
Tadesse
,
Y.
,
Thayer
,
N.
, and
Priya
,
S.
,
2010
, “
Tailoring the Response Time of Shape Memory Alloy Wires Through Active Cooling and Pre-stress
,”
J. Intell. Mater. Syst. Struct.
,
21
(
1
), pp.
19
40
.
7.
Kobayashi
,
H.
,
Hyodo
,
K.
, and
Ogane
,
D.
,
1998
, “
On Tendon-Driven Robotic Mechanisms With Redundant Tendons
,”
Int. J. Rob. Res.
,
17
(
5
), pp.
561
571
.
8.
Ozawa
,
R.
,
Hashirii
,
K.
, and
Kobayashi
,
H.
,
2009
, “
Design and Control of Underactuated Tendon-Driven Mechanisms
,”
2009 IEEE International Conference on Robotics and Automation
,
Kobe, Japan
,
May 12–17
, pp.
1522
1527
.
9.
Sheridan
,
T. B.
, and
Lunteren
,
T. v.
, eds.,
1997
,
Perspectives on the Human Controller: Essays in Honor of Henk G. Stassen
, 1st ed.,
CRC Press
,
Mahwah, NJ
.
10.
Martens
,
M.
, and
Boblan
,
I.
,
2017
, “
Modeling the Static Force of a Festo Pneumatic Muscle Actuator: A New Approach and a Comparison to Existing Models
,”
Actuators
,
6
(
4
), p.
33
.
11.
Schulte
,
H. F.
,
1961
, “
The Characteristics of McKibben Artificial Muscle
,”
The Application of External Power in Prosthetics and Orthotics
, Appendix H(
87
), pp.
94
115
.
12.
Chou
,
C.-P.
, and
Hannaford
,
B.
,
1996
, “
Measurement and Modeling of McKibben Pneumatic Artificial Muscles
,”
IEEE Trans. Rob. Autom.
,
12
(
1
), pp.
90
102
.
13.
Tondu
,
B.
, and
Lopez
,
P.
,
2000
, “
Modeling and Control of McKibben Artificial Muscle Robot Actuators
,”
IEEE Control Syst. Mag.
,
20
(
2
), pp.
15
38
. DOI 10.1109/37.833638.
14.
Martens
,
M.
,
Seel
,
T.
, and
Boblan
,
I.
,
2018
, “
A Decoupling Servo Pressure Controller for Pneumatic Muscle Actuators
,”
23rd International Conference on Methods Models in Automation Robotics (MMAR)
,
Miedzyzdroje, Poland
,
Aug. 27–30
.
15.
Martens
,
M.
,
Seel
,
T.
,
Zawatzki
,
J.
, and
Boblan
,
I.
,
2018
, “
A Novel Framework for a Systematic Integration of Pneumatic-Muscle-Actuator-Driven Joints Into Robotic Systems Via a Torque Control Interface
,”
Actuators
,
7
(
4
), p.
82
.
16.
Wang
,
T.
,
Chen
,
X.
, and
Qin
,
W.
,
2019
, “
A Novel Adaptive Control for Reaching Movements of an Anthropomorphic Arm Driven by Pneumatic Artificial Muscles
,”
Appl. Soft Comput.
,
83
, p.
105623
.
17.
Bou Saba
,
D.
,
Massioni
,
P.
,
Bideaux
,
E.
, and
Brun
,
X.
,
2019
, “
Flatness-Based Control of a Two-Degree-of-Freedom Platform With Pneumatic Artificial Muscles
,”
ASME J. Dyn. Syst. Meas. Contr.
,
141
(
2
), p.
021003
.
18.
Zhao
,
L.
,
Cheng
,
H.
,
Zhang
,
J.
, and
Xia
,
Y.
,
2021
, “
Adaptive Control for a Motion Mechanism With Pneumatic Artificial Muscles Subject to Dead-Zones
,”
Mech. Syst. Signal Process.
,
148
, p.
107155
.
19.
Chen
,
Y.
,
Sun
,
N.
,
Liang
,
D.
,
Qin
,
Y.
, and
Fang
,
Y.
,
2021
, “
A Neuroadaptive Control Method for Pneumatic Artificial Muscle Systems With Hardware Experiments
,”
Mech. Syst. Signal Process.
,
146
, p.
106976
.
20.
Spong
,
M. W.
,
Hutchinson
,
S.
, and
Vidyasagar
,
M.
,
2005
,
Robot Modeling and Control
, 1st edn.,
Wiley
,
Hoboken, NJ
.
21.
Slotine
,
J.-J.
, and
Li
,
W.
,
1991
,
Applied Nonlinear Control
,
Pearson
,
Englewood Cliffs, NJ
.
22.
Russell
,
D. L.
,
McTavish
,
M.
, and
English
,
C. E.
,
2009
, “
Mechanical Issues Inherent in Antagonistically Actuated Systems
,”
ASME J. Mech. Rob.
,
1
(
4
), p.
044501
.
23.
Beater
,
P.
,
2007
,
Pneumatic Drives: System Design, Modelling and Control
,
Springer-Verlag
,
Berlin/Heidelberg
.
24.
Slotine
,
J.-J.
, and
Weiping
,
L.
,
1988
, “
Adaptive Manipulator Control: A Case Study
,”
IEEE Trans. Autom. Control
,
33
(
11
), pp.
995
1003
.
25.
Markus
,
A. T.
,
2021
, “
Modelagem e controle por torque computado de músculos pneumáticos artificiais como atuadores em prótese de mão
,” Ph.D. thesis,
Universidade Federal do Rio Grande do Sul
,
Porto Alegre
.
26.
Vinet
,
R.
,
Lozac’h
,
Y.
,
Beaudry
,
N.
, and
Drouin
,
G.
,
1995
, “
Design Methodology for a Multifunctional Hand Prosthesis
,”
J. Rehabil. Res. Dev.
,
32
(
4
), pp.
316
324
.
27.
Gavrilović
,
M. M.
, and
Marić
,
M. R.
,
1969
, “
Positional Servo-Mechanism Activated by Artificial Muscles
,”
Med. Biol. Eng.
,
7
(
1
), pp.
77
82
.
28.
McDonell
,
B. W.
,
1996
,
Modeling, Identification, and Control of a Pneumatically Actuated Robotic Manipulator
,
University of California
,
Irvine, CA
, Google-Books-ID: j1z_NwAACAAJ.
29.
Schluter
,
M.
, and
Perondi
,
E.
,
2020
, “
Mathematical Modeling With Friction of a SCARA Robot Driven by Pneumatic Semi-rotary Actuators
,”
IEEE Latin Am. Trans.
,
18
(
06
), pp.
1066
1076
.
You do not currently have access to this content.