Abstract

To solve the problems of existing swallowing robots, such as low load capacity, small deploy/fold ratio, and small swallowing space, this article presents a new snake-inspired swallowing robot (SSR) that can synchronously deploy and fold both axially and radially. The SSR is composed of multiple modules, each of which includes two end disk mechanisms (EDMs) and three connecting backbone mechanisms (CBBMs). The EDM is designed based on Hoberman’s linkages to achieve a radial deployment and a folding motion, while the CBBM is designed to realize the axial deployment and the folding movement and connect the EDMs. In addition, the driving device is designed. Then, to achieve the maximum deploy/fold ratio of the SSR and meet the requirements of assembly, the length of the rods is optimized on the basis of the kinematics analysis of the SSR. The final deploy/fold ratio reached up to 2.2459. The ratio of the maximum to the minimum swallowing space is 28.2754. In the end, experiments are conducted to evaluate the ability to swallow and store one object and multiple objects.

References

1.
Li
,
H. L.
,
Yao
,
J. T.
,
Liu
,
C. Y.
,
Zhou
,
P.
,
Xu
,
Y. D.
, and
Zhao
,
Y. S.
,
2020
, “
A Bioinspired Soft Swallowing Robot Based on Compliant Guiding Structure
,”
Soft Rob.
,
7
(
4
), pp.
491
499
.
2.
Wang
,
H.
,
Xu
,
H.
,
Yu
,
F.
,
Li
,
X.
,
Yang
,
C.
,
Chen
,
S.
,
Chen
,
J.
,
Zhang
,
Y.
, and
Zhou
,
X.
,
2020
, “
Modeling and Experiments on the Swallowing and Disgorging Characteristics of an Underwater Continuum Manipulator
,”
2020 IEEE International Conference on Robotics and Automation (ICRA)
,
Paris, France
,
May 31–Aug. 31
, IEEE, pp.
2946
2952
.
3.
Sui
,
D. B.
,
Zhu
,
Y. H.
,
Zhao
,
S. K.
,
Wang
,
T. S.
,
Agrawal
,
S. K.
,
Zhang
,
H.
, and
Zhao
,
J.
,
2020
, “
A Bioinspired Soft Swallowing Gripper for Universal Adaptable Grasping
,”
Soft Rob.
,
9
(
1
), pp.
36
56
.
4.
Chen
,
F. J.
,
Dirven
,
S.
,
Xu
,
W. L.
, and
Li
,
X. N.
,
2014
, “
Soft Actuator Mimicking Human Esophageal Peristalsis for a Swallowing Robot
,”
IEEE/ASME Trans. Mechatron.
,
19
(
4
), pp.
1300
1308
.
5.
Dirven
,
S.
,
Xu
,
W. L.
, and
Cheng
,
L. K.
,
2015
, “
Sinusoidal Peristaltic Waves in Soft Actuator for Mimicry of Esophageal Swallowing
,”
IEEE/ASME Trans. Mechatron.
,
20
(
3
), pp.
1331
1337
.
6.
Zhu
,
M. Z.
,
Xie
,
M. Y.
,
Xu
,
W. L.
, and
Cheng
,
L. K.
,
2016
, “
A Nanocomposite-Based Stretchable Deformation Sensor Matrix for a Soft-Bodied Swallowing Robot
,”
IEEE Sensors J.
,
16
(
10
), pp.
3848
3855
.
7.
Dirven
,
S.
,
Allen
,
J.
,
Xu
,
W. P.
, and
Cheng
,
L. K.
,
2017
, “
Soft-Robotic Esophageal Swallowing as a Clinically-Inspired Bolus Rheometry Technique
,”
Meas. Sci. Technol.
,
28
(
3
), p.
035701
.
8.
Zhu
,
M. Z.
,
Xu
,
W. L.
, and
Cheng
,
L. K.
,
2017
, “
Esophageal Peristaltic Control of a Soft-Bodied Swallowing Robot by the Central Pattern Generator
,”
IEEE/ASME Trans. Mechatron.
,
22
(
1
), pp.
91
98
.
9.
Fujiso
,
Y.
,
Perrin
,
N.
,
van der Giessen
,
J.
,
Vrana
,
N. E.
,
Neveu
,
F.
, and
Woisard
,
V.
,
2018
, “
Swall-E: A Robotic In-Vitro Simulation of Human Swallowing
,”
PLoS One
,
13
(
12
), p.
e0208193
.
10.
Zhao
,
J.-S.
,
Wang
,
J.-Y.
,
Chu
,
F. L.
,
Feng
,
Z.-J.
, and
Dai
,
J. S.
,
2011
, “
Structure Synthesis and Statics Analysis of a Foldable Stair
,”
Mech. Mach. Theory
,
46
(
7
), pp.
998
1015
.
11.
Wei
,
G.
, and
Dai
,
J. S.
,
2014
, “
Origami-Inspired Integrated Planar-Spherical Overconstrained Mechanisms
,”
ASME J. Mech. Des.
,
136
(
5
), p.
051003
.
12.
Chen
,
Y.
,
Peng
,
R.
, and
You
,
Z.
,
2015
, “
Origami of Thick Panels
,”
Science
,
349
(
6246
), pp.
396
400
.
13.
Qi
,
X.
,
Huang
,
H.
,
Miao
,
Z.
,
Li
,
B.
, and
Deng
,
Z.
,
2016
, “
Design and Mobility Analysis of Large Deployable Mechanisms Based on Plane-Symmetric Bricard Linkage
,”
ASME J. Mech. Des.
,
139
(
2
), p.
022302
.
14.
Huang
,
H.
,
Li
,
B.
,
Zhang
,
T.
,
Zhang
,
Z.
,
Qi
,
X.
, and
Hu
,
Y.
,
2019
, “
Design of Large Single-Mobility Surface-Deployable Mechanism Using Irregularly Shaped Triangular Prismoid Modules
,”
ASME J. Mech. Des.
,
141
(
1
), p.
012301
.
15.
Jia
,
G.
,
Huang
,
H.
,
Wang
,
S.
, and
Li
,
B.
,
2021
, “
Type Synthesis of Plane-Symmetric Deployable Grasping Parallel Mechanisms Using Constraint Force Parallelogram Law
,”
Mech. Mach. Theory
,
161
, p.
104330
.
16.
Jia
,
G.
,
Huang
,
H.
,
Guo
,
H.
,
Li
,
B.
, and
Dai
,
J. S.
,
2021
, “
Design of Transformable Hinged Ori-Block Dissected From Cylinders and Cones
,”
ASME J. Mech. Des.
,
143
(
9
), p.
094501
.
17.
Jia
,
G.
,
Li
,
B.
,
Huang
,
H.
, and
Zhang
,
D.
,
2020
, “
Type Synthesis of Metamorphic Mechanisms With Scissor-Like Linkage Based on Different Kinds of Connecting Pairs
,”
Mech. Mach. Theory
,
151
, p.
103848
.
18.
Jia
,
G.
,
Huang
,
H.
,
Li
,
B.
,
Wu
,
Y.
,
Cao
,
Q.
, and
Guo
,
H.
,
2018
, “
Synthesis of a Novel Type of Metamorphic Mechanism Module for Large Scale Deployable Grasping Manipulators
,”
Mech. Mach. Theory
,
128
, pp.
544
559
.
19.
Dai
,
J. S.
, and
Wang
,
D.
,
2006
, “
Geometric Analysis and Synthesis of the Metamorphic Robotic Hand
,”
ASME J. Mech. Des.
,
129
(
11
), pp.
1191
1197
.
20.
Araromi
,
O. A.
,
Gavrilovich
,
I.
,
Shintake
,
J.
,
Rosset
,
S.
,
Richard
,
M.
,
Gass
,
V.
, and
Shea
,
H. R.
,
2015
, “
Rollable Multisegment Dielectric Elastomer Minimum Energy Structures for a Deployable Microsatellite Gripper
,”
IEEE/ASME Trans. Mechatron.
,
20
(
1
), pp.
438
446
.
21.
Zhang
,
Y.
,
Huang
,
H. L.
,
Mei
,
T.
, and
Li
,
B.
,
2022
, “
Type Synthesis of Single-Loop Deployable Mechanisms Based on Improved Atlas Method for Single-DOF Grasping Manipulators
,”
Mech. Mach. Theory
,
169
, p.
104656
.
22.
Xiu
,
H. H.
,
Xu
,
T.
,
Jones
,
A. H.
,
Wei
,
G. W.
,
Ren
,
L.
, and
Dai
,
J. S.
,
2018
, “
Dynamic Modelling and Simulation of a Deployable Quadrotor
,”
4th IEEE/IFToMM International Conference on Reconfigurable Mechanisms and Robots (ReMAR)
,
Delft, The Netherlands
,
June 20–22
, pp.
1
8
.
23.
Finistauri
,
A. D.
, and
Xi
,
F.
,
2009
, “
Type Synthesis and Kinematics of a Modular Variable Geometry Truss Mechanism for Aircraft Wing Morphing
,”
2009 ASME/IFToMM International Conference on Reconfigurable Mechanisms and Robots
,
London, UK
,
June 22–24
, IEEE, pp.
478
485
.
24.
Wei
,
G.
,
Chen
,
Y.
, and
Dai
,
J. S.
,
2014
, “
Synthesis, Mobility, and Multifurcation of Deployable Polyhedral Mechanisms With Radially Reciprocating Motion
,”
ASME J. Mech. Des.
,
136
(
9
), p.
091003
.
25.
Qi
,
X. Z.
,
Deng
,
Z.
,
Li
,
B.
,
Liu
,
R.
, and
Guo
,
H.
,
2013
, “
Design and Optimization of Large Deployable Mechanism Constructed by Myard Linkages
,”
CEAS Space J.
,
5
(
3–4
), pp.
147
155
.
26.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Foldable Bar Structures
,”
Int. J. Solids Struct.
,
34
(
15
), pp.
1825
1847
.
27.
Abah
,
C.
,
Orekhov
,
A. L.
, and
Simaan
,
N.
,
2018
, “
Design Considerations and Redundancy Resolution for Variable Geometry Continuum Robots
,”
2018 IEEE International Conference on Robotics and Automation (ICRA)
,
Brisbane, QLD, Australia
,
May 21–25
, IEEE, pp.
767
774
.
28.
Iacoponi
,
S.
,
Picardi
,
G.
,
Chellapurath
,
M.
,
Calisti
,
M.
, and
Cecilia
,
L.
,
2018
, “
Underwater Soft Jet Propulsion Based on a Hoberman Mechanism
,”
2018 IEEE International Conference on Soft Robotics (RoboSoft)
,
Livorno, Italy
,
Apr. 24–28
, IEEE, pp.
449
454
.
29.
Nassar
,
I. T.
,
Weller
,
T. M.
, and
Lusk
,
C. P.
,
2013
, “
Radiating Shape-Shifting Surface Based on a Planar Hoberman Mechanism
,”
IEEE Trans. Antennas Propag.
,
61
(
5
), pp.
2861
2864
.
30.
Cai
,
J. G.
,
Xu
,
Y. X.
, and
Feng
,
J.
,
2013
, “
Kinematic Analysis of Hoberman's Linkages With the Screw Theory
,”
Mech. Mach. Theory
,
63
, pp.
28
34
.
31.
Chen
,
B.
,
Hu
,
J.
,
Chen
,
W.
, and
Qi
,
J.
,
2020
, “
Geometrical Analysis of Connecting Beam Mandala: A Planar Deployable Mechanism
,”
ASME J. Mech. Rob.
,
12
(
1
), p.
011009
.
32.
Sun
,
X.
,
Yao
,
Y.
, and
Li
,
R.
,
2019
, “
Novel Method of Constructing Generalized Hoberman Sphere Mechanisms Based on Deployment Axes
,”
Front. Mech. Eng.
,
15
(
1
), pp.
89
99
.
You do not currently have access to this content.