Abstract

Rigid origami mechanisms have great practical utility in different fields. This paper presents a rigid and foldable mechanism based on the origami artwork Twisted Tower. The mathematical model of the funnel-shaped tower cell was developed for the first time, which accurately describes its kinematic behavior. Based on this model, criteria for the appropriate geometry of the tower components are proposed to prevent internal interference in the tower mechanism during the twisting movement. In this paper, two geometric design cases of twisted tower mechanisms, including a normal-shaped tower and a heteromorphic tower, are presented. Several additional modifications were also imposed to adapt the proposed mechanism to generalized and standardized manufacturing and assembly. Experimental results illustrate that the kinematic characteristics of the fabricated mechanism meet its designed performance. Furthermore, the proposed mechanism is suitable for applications such as continuum manipulators, which exhibit much better resistance to external loads than their flexible-rigid hybrid counterparts.

References

1.
Beech
,
R.
,
2009
,
The Practical Illustrated Encyclopedia of Origami: The Complete Guide to the Art of Paperfolding
,
Anness
,
London, UK
.
2.
Haga
,
K.
,
Fonacier
,
J.
, and
Isoda
,
M.
,
2008
,
Origamics: Mathematical Explorations Through Paper Folding
,
World Scientific
,
Hackensack, NJ
.
3.
Lang
,
R. J.
,
2018
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press, Taylor & Francis Group
,
Boca Raton
.
4.
Santangelo
,
C. D.
,
2020
, “
Theory and Practice of Origami in Science
,”
Soft Matter
,
16
(
1
), pp.
94
101
.
5.
Tachi
,
T.
,
2010
, “
Geometric Considerations for the Design of Rigid Origami Structures
,”
International Association for Shell and Spatial Structures (IASS) Symposium 2010
,
Shanghai, China
,
Nov. 8–12
.
6.
Treml
,
B.
,
Gillman
,
A.
,
Buskohl
,
P.
, and
Vaia
,
R.
,
2018
, “
Origami Mechanologic
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
27
), pp.
6916
6921
.
7.
Fang
,
H.
,
Li
,
S.
,
Ji
,
H.
, and
Wang
,
K. W.
,
2017
, “
Dynamics of a Bistable Miura-Origami Structure
,”
Phys. Rev. E
,
95
(
5
), p.
052211
.
8.
Fang
,
H.
,
Chu
,
S.-C. A.
,
Xia
,
Y.
, and
Wang
,
K.-W.
,
2018
, “
Programmable Self-Locking Origami Mechanical Metamaterials
,”
Adv. Mater.
,
30
(
15
), p.
1706311
.
9.
Pehrson
,
N. A.
,
Ames
,
D. C.
,
Smith
,
S. P.
,
Magleby
,
S. P.
, and
Arya
,
M.
,
2020
, “
Self-Deployable, Self-Stiffening, and Retractable Origami-Based Arrays for Spacecraft
,”
AIAA J.
,
58
(
7
), pp.
3221
3228
.
10.
Samuelsson
,
C.
,
2015
, “
Structural Folding-A Parametric Design Method for Origami Architecture
,” Master’s Thesis,
Department of Applied Mechanics, Chalmers University of Technology
,
Gothenburg, Sweden
.
11.
Megahed
,
N. A.
,
2017
, “
Origami Folding and Its Potential for Architecture Students
,”
Des. J.
,
20
(
2
), pp.
279
297
.
12.
Tantawy
,
D. M. A.
,
2015
, “
Origamic Architectural Form Design System
,”
Int. J. Sci.: Basic Appl. Res.
,
21
(
2
), pp.
66
86
.
13.
Zhang
,
T.
,
Hartl
,
C.
,
Frank
,
K.
,
Heuer-Jungemann
,
A.
,
Fischer
,
S.
,
Nickels
,
P. C.
,
Nickel
,
B.
, and
Liedl
,
T.
,
2018
, “
3D DNA Origami Crystals
,”
Adv. Mater.
,
30
(
28
), p.
1800273
.
14.
Johnson
,
M.
,
Chen
,
Y.
,
Hovet
,
S.
,
Xu
,
S.
,
Wood
,
B.
,
Ren
,
H.
,
Tokuda
,
J.
, and
Tse
,
Z. T. H.
,
2017
, “
Fabricating Biomedical Origami: A State-of-the-Art Review
,”
Int. J. Comput. Assist. Radiol. Surg.
,
12
(
11
), pp.
2023
2032
.
15.
Feng
,
H.
,
Yang
,
M.
,
Yao
,
G.
,
Chen
,
Y.
, and
Dai
,
J.
,
2018
, “
Origami Robots
,”
Sci. Sin. Technol.
,
48
(
12
), pp.
1259
1274
.
16.
Miyashita
,
S.
,
Guitron
,
S.
,
Li
,
S.
, and
Rus
,
D.
,
2017
, “
Robotic Metamorphosis by Origami Exoskeletons
,”
Sci. Robot.
,
2
(
10
), p.
eaao4369
.
17.
Minori
,
A. F.
,
He
,
Q.
,
Glick
,
P. E.
,
Adibnazari
,
I.
,
Stopol
,
A.
,
Cai
,
S.
, and
Tolley
,
M. T.
,
2020
, “
Reversible Actuation for Self-Folding Modular Machines Using Liquid Crystal Elastomer
,”
Smart Mater. Struct.
,
29
(
10
), p.
105003
.
18.
Fang
,
H.
,
Zhang
,
Y.
, and
Wang
,
K. W.
,
2017
, “
Origami-Based Earthworm-Like Locomotion Robots
,”
Bioinspir. Biomim.
,
12
(
6
), p.
065003
.
19.
Fang
,
H.
,
Zhang
,
Y.
, and
Wang
,
K. W.
,
2017
, “
An Earthworm-Like Robot Using Origami-Ball Structures
,”
Active and Passive Smart Structures and Integrated Systems 2017
,
Portland, OR
, pp.
229
238
.
20.
Paez
,
L.
,
Agarwal
,
G.
, and
Paik
,
J.
,
2016
, “
Design and Analysis of a Soft Pneumatic Actuator With Origami Shell Reinforcement
,”
Soft Robot.
,
3
(
3
), pp.
109
119
.
21.
Miura
,
K.
,
1985
, “
Method of Packaging and Deployment of Large Membranes in Space
,”
The Institute of Space and Astronautical Science Report
,
618
, pp.
1
9
.
22.
Hanna
,
B. H.
,
Lund
,
J. M.
,
Lang
,
R. J.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2014
, “
Waterbomb Base: A Symmetric Single-Vertex Bistable Origami Mechanism
,”
Smart Mater. Struct.
,
23
(
9
), p.
094009
.
23.
Cai
,
J.
,
Deng
,
X.
,
Xu
,
Y.
, and
Feng
,
J.
,
2016
, “
Motion Analysis of a Foldable Barrel Vault Based on Regular and Irregular Yoshimura Origami
,”
ASME J. Mech. Rob.
,
8
(
2
), p.
021017
.
24.
Yoshimura
,
Y.
,
1955
,
On the Mechanism of Buckling of a Circular Cylindrical Shell Under Axial Compression, NACA-TM-1390
.
25.
Vander Hoff
,
E.
,
Jeong
,
D.
, and
Lee
,
K.
,
2014
, “
OrigamiBot-I: A Thread-Actuated Origami Robot for Manipulation and Locomotion
,”
2014 IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Chicago, IL
,
Sept. 14–18
, pp.
1421
1426
.
26.
Jeong
,
D.
, and
Lee
,
K.
,
2015
, “
OrigamiBot-II: An Amphibious Robot With Reconfigurable Origami Wheels for Locomotion in Dynamic Environments
,”
Proceedings of the ASME 2015 International Mechanical Engineering Congress and Exposition. Volume 4A: Dynamics, Vibration, and Control
,
Houston, TX
,
Nov. 13–19
, p. V04AT04A026.
27.
Wang
,
Y.
, and
Lee
,
K.
,
2017
, “
3D-Printed Semi-Soft Mechanisms Inspired by Origami Twisted Tower
,”
2017 NASA/ESA Conference on Adaptive Hardware and Systems (AHS)
,
Pasadena, CA
,
July 24–27
, pp.
161
166
.
28.
Liu
,
T.
,
Wang
,
Y.
, and
Lee
,
K.
,
2018
, “
Three-Dimensional Printable Origami Twisted Tower: Design, Fabrication, and Robot Embodiment
,”
IEEE Robot. Autom. Lett.
,
3
(
1
), pp.
116
123
.
29.
Jeong
,
D.
, and
Lee
,
K.
,
2018
, “
Design and Analysis of an Origami-Based Three-Finger Manipulator
,”
Robotica
,
36
(
2
), pp.
261
274
.
30.
Morris
,
E.
,
McAdams
,
D. A.
, and
Malak
,
R.
,
2016
, “
The State of the Art of Origami-Inspired Products: A Review
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 5B: 40th Mechanisms and Robotics Conference
,
Charlotte, NC
,
Aug. 21–24
, p. V05BT07A014.
31.
Balkcom
,
D. J.
, and
Mason
,
M. T.
,
2008
, “
Robotic Origami Folding
,”
Int. J. Robot. Res.
,
27
(
5
), pp.
613
627
.
32.
Lang
,
R. J.
,
Tolman
,
K. A.
,
Crampton
,
E. B.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
A Review of Thickness-Accommodation Techniques in Origami-Inspired Engineering
,”
ASME Appl. Mech. Rev.
,
70
(
1
), p.
010805
.
33.
Ku
,
J. S.
, and
Demaine
,
E. D.
,
2016
, “
Folding Flat Crease Patterns With Thick Materials
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031003
.
34.
Lang
,
R. J.
,
Nelson
,
T.
,
Magleby
,
S.
, and
Howell
,
L.
,
2017
, “
Thick Rigidly Foldable Origami Mechanisms Based on Synchronized Offset Rolling Contact Elements
,”
ASME J. Mech. Rob.
,
9
(
2
), p.
021013
.
35.
Guang
,
C.
, and
Yang
,
Y.
,
2018
, “
Single-Vertex Multicrease Rigid Origami With Nonzero Thickness and Its Transformation Into Deployable Mechanisms
,”
ASME J. Mech. Rob.
,
10
(
1
), p.
011010
.
36.
Lang
,
R. J.
,
Brown
,
N.
,
Ignaut
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Rigidly Foldable Thick Origami Using Designed-Offset Linkages
,”
ASME J. Mech. Rob.
,
12
(
2
), p.
021106
.
37.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.
38.
Origami Maniacs: Twisted Tower by Mihoko Tachibana
,”
Origami Maniacs
, http://origamimaniacs.blogspot.com/2012/02/twisted-tower-by-mihoko-tachibana.html, Accessed November 30, 2020.
39.
Lang
,
R. J.
,
2009
,
Origami 4
,
CRC Press
,
Boca Raton, FL
.
You do not currently have access to this content.