Abstract

The pose accuracy is a crucial issue that limits the application of hybrid robots. The model-free calibration instead of complex error modeling is investigated to improve the pose accuracy of a 5-degrees-of-freedom (DOF) hybrid robot efficiently. To overcome the difficult problem of model-free calibration in high-dimension joint space that the required measurement data for accurate prediction increase exponentially, a dimensionality reduction method is proposed to decompose high-dimension joint space into two low-dimension subspaces. Then the pose errors can be respectively measured in two subspaces based on the calibrated standard poses to train their corresponding pose error predicators. The standard poses ensure the measured pose errors in two subspaces do not affect each other. Thus, a merging operation obtained by kinematic analysis can finally merge the predicted pose errors of two subspaces into the complete pose error. The error predicators established by several regression methods including artificial neural network, extreme learning machine (ELM) and Twin Gaussian process regression are compared on multi aspects, and ELM stands out among them due to its outstanding prediction accuracy, good anti-noise ability, and low training data requirements. In addition, different representations of pose and pose error are adopted at different calibration stages to deal with the influence of parasitic motion of hybrid robot for the implementation of proposed calibration method. The compensation experiment is executed and the results show that position and orientation errors are reduced by 92.4% and 88.2% on average after calibration and the pose accuracy can meet application requirements.

References

1.
Caccavale
,
F.
,
Siciliano
,
B.
, and
Villani
,
L.
,
2003
, “
The Tricept Robot: Dynamics and Impedance Control
,”
IEEE-ASME Trans. Mechatron.
,
8
(
2
), pp.
263
268
.
2.
Jin
,
Y.
,
Bi
,
Z.
,
Liu
,
H.
,
Higgins
,
C.
,
Price
,
M.
,
Chen
,
W.
, and
Huang
,
T.
,
2015
, “
Kinematic Analysis and Dimensional Synthesis of Exechon Parallel Kinematic Machine for Large Volume Machining
,”
ASME J. Mech. Rob.
,
7
(
4
), p. 041004.
3.
Huang
,
T.
,
Li
,
M.
,
Zhao
,
X. M.
,
Mei
,
J. P.
,
Chetwynd
,
D. G.
, and
Hu
,
S. J.
,
2005
, “
Conceptual Design and Dimensional Synthesis for a 3-DOF Module of the Invariant—A Novel 5-DOF Reconfigurable Hybrid Robot
,”
IEEE Trans. Robot.
,
21
(
3
), pp.
449
456
.
4.
Chanal
,
H.
,
Duc
,
E.
,
Ray
,
P.
, and
Hascoët
,
J. Y.
,
2007
, “
A new Approach for the Geometrical Calibration of Parallel Kinematics Machines Tools Based on the Machining of a Dedicated Part
,”
Int. J. Mach. Tools Manuf.
,
47
(
7–8
), pp.
1151
1163
.
5.
Li
,
J.
,
Li
,
B.
,
Shen
,
N.
,
Qian
,
H.
, and
Guo
,
Z.
,
2017
, “
Effect of the Cutter Path and the Workpiece Clamping Position on the Stability of the Robotic Milling System
,”
Int. J. Adv. Manuf. Technol.
,
89
(
9
), pp.
2919
2933
.
6.
Weck
,
M.
, and
Staimer
,
D.
,
2002
, “
Parallel Kinematic Machine Tools—Current State and Future Potentials
,”
Cirp Ann. Manuf. Technol.
,
51
(
2
), pp.
671
683
.
7.
Tang
,
T.
, and
Zhang
,
J.
,
2019
, “
Conceptual Design and Kinetostatic Analysis of a Modular Parallel Kinematic Machine-Based Hybrid Machine Tool for Large Aeronautic Components
,”
Robot. Comput.-Integr. Manuf.
,
57
, pp.
1
16
.
8.
Tian
,
W.
,
Mou
,
M.
,
Yang
,
J.
, and
Yin
,
F.
,
2019
, “
Kinematic Calibration of a 5-DOF Hybrid Kinematic Machine Tool by Considering the Ill-Posed Identification Problem Using Regularisation Method
,”
Robot. Comput.-Integr. Manuf.
,
60
, pp.
49
62
.
9.
Huang
,
T.
,
Zhao
,
D.
,
Yin
,
F.
,
Tian
,
W.
, and
Chetwynd
,
D. G.
,
2019
, “
Kinematic Calibration of a 6-DOF Hybrid Robot by Considering Multicollinearity in the Identification Jacobian
,”
Mech. Mach. Theory
,
131
, pp.
371
384
.
10.
Liu
,
H.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2011
, “
A General Approach for Geometric Error Modeling of Lower Mobility Parallel Manipulators
,”
ASME J. Mech. Rob.
,
3
(
2
), p. 021013.
11.
He
,
J.
,
Ding
,
Q.
,
Gao
,
F.
, and
Zhang
,
H.
,
2020
, “
Kinematic Calibration Methodology of Hybrid Manipulator Containing Parallel Topology With Main Limb
,”
Measurement
,
152
.
12.
Tian
,
W.
,
Yin
,
F.
,
Liu
,
H.
,
Li
,
J.
,
Li
,
Q.
,
Huang
,
T.
, and
Chetwynd
,
D. G.
,
2016
, “
Kinematic Calibration of a 3-DOF Spindle Head Using a Double Ball bar
,”
Mech. Mach. Theory
,
102
, pp.
167
178
.
13.
Huang
,
T.
,
Hong
,
Z. Y.
,
Mei
,
J. P.
, and
Chetwynd
,
D. G.
, “
Calibration of the 3-DOF Module of a 5-DOF Reconfigurable Hybrid Robot Using a Double-Ball-Bar System
,”
In IEEE/RSJ International Conference on Intelligent Robots and Systems
,
Beijing, China
,
Oct.
, pp.
508
512
.
14.
Liu
,
Y.
,
Wu
,
J.
,
Wang
,
L.
,
Wang
,
J.
,
Wang
,
D.
, and
Yu
,
G.
,
2017
, “
Kinematic Calibration of a 3-DOF Parallel Tool Head
,”
Ind. Rob.
,
44
(
2
), pp.
231
241
.
15.
Zhao
,
D.
,
Bi
,
Y.
, and
Ke
,
Y.
,
2017
, “
An Efficient Error Compensation Method for Coordinated CNC Five-Axis Machine Tools
,”
Int. J. Mach. Tools Manuf.
,
123
, pp.
105
115
.
16.
Bai
,
Y.
, and
Zhuang
,
H. Q.
, “
On the Comparison of Model-Based and Modeless Robotic Calibration Based on the Fuzzy Interpolation Technique
,”
2004 IEEE Conference on Robotics, Automation and Mechatronics
,
Singapore
,
Dec.
, pp.
892
897
.
17.
Zhong
,
X.
,
Lewis
,
J.
, and
N-Nagy
,
F. L.
,
1996
, “
Inverse Robot Calibration Using Artificial Neural Networks
,”
Eng. Appl. Artif. Intell.
,
9
(
1
), pp.
83
93
.
18.
Guo
,
Y.
,
Yin
,
S.
,
Ren
,
Y.
,
Zhu
,
J.
,
Yang
,
S.
, and
Ye
,
S.
,
2015
, “
A Multilevel Calibration Technique for an Industrial Robot With Parallelogram Mechanism
,”
Precision Eng.
,
40
, pp.
261
272
.
19.
Zhao
,
G.
,
Zhang
,
P.
,
Ma
,
G.
, and
Xiao
,
W.
,
2019
, “
System Identification of the Nonlinear Residual Errors of an Industrial Robot Using Massive Measurements
,”
Robot. Comput.-Integr. Manuf.
,
59
, pp.
104
114
.
20.
Liao
,
S.
,
Zeng
,
Q.
,
Ehmann
,
K. F.
, and
Cao
,
J.
,
2020
, “
Parameter Identification and Nonparametric Calibration of the Tri-Pyramid Robot
,”
IEEE/ASME Trans. Mechatron.
,
25
(
5
), pp.
2309
2317
.
21.
Qi
,
J.
,
Chen
,
B.
, and
Zhang
,
D.
,
2021
, “
A Calibration Method for Enhancing Robot Accuracy Through Integration of Kinematic Model and Spatial Interpolation Algorithm
,”
ASME J. Mech. Rob.
,
13
(
6
), p.
061013
.
22.
Wang
,
S. M.
,
Yu
,
H. J.
, and
Liao
,
H. W.
,
2006
, “
A New High-Efficiency Error Compensation System for CNC Multi-Axis Machine Tools
,”
Int. J. Adv. Manuf. Technol.
,
28
(
5–6
), pp.
518
526
.
23.
Chuthai
,
T.
,
Cole
,
M. O. T.
,
Wongratanaphisan
,
T.
, and
Puangmali
,
P.
,
2020
, “
Adaptive Kinematic Mapping Based on Chebyshev Interpolation: Application to Flexure-Jointed Micromanipulator Control
,”
IEEE/ASME Trans. Mechatron.
,
25
(
1
), pp.
118
129
.
24.
Nguyen
,
H.-N.
,
Le
,
P.-N.
, and
Kang
,
H.-J.
,
2019
, “
A New Calibration Method for Enhancing Robot Position Accuracy by Combining a Robot Model–Based Identification Approach and an Artificial Neural Network–Based Error Compensation Technique
,”
Adv. Mech. Eng.
,
11
(
1
), p.
168781401882293
.
25.
Wan
,
A.
,
Song
,
L.
,
Xu
,
J.
,
Liu
,
S.
, and
Chen
,
K.
,
2018
, “
Calibration and Compensation of Machine Tool Volumetric Error Using a Laser Tracker
,”
Int. J. Mach. Tools Manuf.
,
124
, pp.
126
133
.
26.
Wang
,
C.
,
Zhao
,
Y.
,
Chen
,
Y.
, and
Tomizuka
,
M.
,
2015
, “
Nonparametric Statistical Learning Control of Robot Manipulators for Trajectory or Contour Tracking
,”
Robot. Comput.-Integr. Manuf.
,
35
, pp.
96
103
.
27.
Yuan
,
P.
,
Chen
,
D.
,
Wang
,
T.
,
Cao
,
S.
,
Cai
,
Y.
, and
Xue
,
L.
,
2018
, “
A Compensation Method Based on Extreme Learning Machine to Enhance Absolute Position Accuracy for Aviation Drilling Robot
,”
Adv. Mech. Eng.
,
10
(
3
), p.
168781401876341
.
28.
Shen
,
N.
,
Geng
,
L.
,
Li
,
J.
,
Ye
,
F.
,
Yu
,
Z.
, and
Wang
,
Z.
,
2020
, “
Improved Stiffness Modeling for an Exechon-Like Parallel Kinematic Machine (PKM) and Its Application
,”
Chin. J. Mech. Eng.
,
33
(
1
).
29.
Li
,
J.
,
Ye
,
F.
,
Shen
,
N.
,
Wang
,
Z.
, and
Geng
,
L.
,
2020
, “
Dimensional Synthesis of a 5-DOF Hybrid Robot
,”
Mech. Mach. Theory
,
150
.
30.
Sun
,
T.
, and
Huo
,
X.
,
2018
, “
Type Synthesis of 1T2R Parallel Mechanisms With Parasitic Motions
,”
Mech. Mach. Theory
,
128
, pp.
412
428
.
31.
Lin
,
R.
,
Guo
,
W.
, and
Gao
,
F.
,
2016
, “
On Parasitic Motion of Parallel Mechanisms
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Charlotte, NC
,
Aug. 21–24
,
p. V05BT07A077
.
32.
Liu
,
Q.
, and
Huang
,
T.
,
2019
, “
Inverse Kinematics of a 5-Axis Hybrid Robot With Non-Singular Tool Path Generation
,”
Robot. Comput.-Integr. Manuf.
,
56
, pp.
140
148
.
33.
Campa
,
R.
, and
De La Torre
,
H.
, “
Pose Control of Robot Manipulators Using Different Orientation Representations: A Comparative Review
,”
2009 American Control Conference
,
San Francisco, CA
,
June
.
34.
Zhou
,
Y.
,
Barnes
,
C.
,
Lu
,
J.
,
Yang
,
J.
, and
Li
,
H.
, “
On the Continuity of Rotation Representations in Neural Networks
,”
Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
,
Long Beach, CA
,
June
, pp.
5745
5753
.
35.
Dai
,
J. S.
,
2015
, “
Euler–Rodrigues Formula Variations, Quaternion Conjugation and Intrinsic Connections
,”
Mech. Mach. Theory
,
92
, pp.
144
152
.
36.
Huang
,
G. B.
,
Zhu
,
Q. Y.
, and
Siew
,
C. K.
, “
Extreme Learning Machine: A New Learning Scheme of Feedforward Neural Networks
,”
2004 IEEE International Joint Conference on Neural Networks
,
Budapest, Hungary
,
July
, pp.
985
990
.
37.
Zhang
,
X.
,
Chen
,
H.
,
Xu
,
J.
,
Song
,
X.
,
Wang
,
J.
, and
Chen
,
X.
,
2018
, “
A Novel Sound-Based Belt Condition Monitoring Method for Robotic Grinding Using Optimally Pruned Extreme Learning Machine
,”
J. Mater. Process. Technol.
,
260
, pp.
9
19
.
38.
Pan
,
Z.
,
Meng
,
Z.
,
Chen
,
Z.
,
Gao
,
W.
, and
Shi
,
Y.
,
2020
, “
A Two-Stage Method Based on Extreme Learning Machine for Predicting the Remaining Useful Life of Rolling-Element Bearings
,”
Mech. Syst. Signal Process
,
144
.
39.
Cao
,
W.
,
Gao
,
J.
,
Ming
,
Z.
, and
Cai
,
S.
,
2017
, “
Some Tricks in Parameter Selection for Extreme Learning Machine
,”
IOP Conf. Ser.: Mater. Sci. Eng.
,
261
, p.
012002
.
40.
Wang
,
D.
,
Wang
,
P.
, and
Ji
,
Y.
,
2015
, “
An Oscillation Bound of the Generalization Performance of Extreme Learning Machine and Corresponding Analysis
,”
Neurocomputing
,
151
, pp.
883
890
.
41.
Subudhi
,
B.
, and
Jena
,
D.
,
2011
, “
A Differential Evolution Based Neural Network Approach to Nonlinear System Identification
,”
Appl. Soft Comput.
,
11
(
1
), pp.
861
871
.
42.
Olgac
,
A.
, and
Karlik
,
B.
,
2011
, “
Performance Analysis of Various Activation Functions in Generalized MLP Architectures of Neural Networks
,”
Int. J. Artif. Intell. Expert Syst.
,
1
(
4
), pp.
111
122
.
43.
Bo
,
L.
, and
Sminchisescu
,
C.
,
2010
, “
Twin Gaussian Processes for Structured Prediction
,”
Int. J. Comput. Vis.
,
87
(
1–2
), pp.
28
52
.
44.
Yan
,
J.
,
Tian
,
C.
,
Huang
,
J.
, and
Wang
,
Y.
, “
Load Forecasting Using Twin Gaussian Process Model
,”
Proceedings of 2012 IEEE International Conference on Service Operations and Logistics, and Informatics
,
Suzhou, China
,
July
, pp.
36
41
.
45.
Talaei
,
S.
,
Beitollahi
,
A.
,
Moshirabadi
,
S.
, and
Fallahian
,
M.
,
2018
, “
Vibration-based Structural Damage Detection Using Twin Gaussian Process (TGP)
,”
Structures
,
16
, pp.
10
19
.
46.
10360-12, I.
,
2016
, “
Acceptance and Reverification Tests for Coordinate Measuring Systems (CMS)
Part 12: Articulated arm Coordinate Measurement Machines (CMM), ISO
.
47.
Shen
,
N. Y.
,
Guo
,
Z. M.
,
Li
,
J.
,
Tong
,
L.
, and
Zhu
,
K.
,
2018
, “
A Practical Method of Improving Hole Position Accuracy in the Robotic Drilling Process
,”
Int. J. Adv. Manuf. Technol.
,
96
(
5–8
), pp.
2973
2987
.
48.
Yang
,
L.
, and
Shami
,
A.
,
2020
, “
On Hyperparameter Optimization of Machine Learning Algorithms: Theory and Practice
,”
Neurocomputing
,
415
, pp.
295
316
.
49.
Shcherbakov
,
M.
,
Brebels
,
A.
,
Shcherbakova
,
N.
,
Tyukov
,
A.
,
Janovsky
,
T.
, and
Kamaev
,
V.
,
2013
, “
A Survey of Forecast Error Measures
,”
World Appl. Sci. J.
,
24
(
24
), pp.
171
176
.
50.
Cernezel
,
A.
,
Rozman
,
I.
, and
Brumen
,
B.
,
2014
, “Comparisons Between Three Cross-Validation Methods for Measuring Learners’ Performances,”
Information Modelling and Knowledge Bases Xxvi
,
B.
Thalheim
,
H.
Jaakkola
,
Y.
Kiyoki
, and
N.
Yoshida
, eds.,
IOS Press
,
Amsterdam
, pp.
77
87
.
You do not currently have access to this content.