Abstract
In this paper, the realization of any specified planar compliance with two 3R serial elastic mechanisms is addressed. Using the concept of dual elastic mechanisms, it is shown that the realization of a compliant behavior with two serial mechanisms connected in parallel is equivalent to its realization with a 6-spring fully parallel mechanism. Since the spring axes of a 6-spring parallel mechanism indicate the geometry of a dual 3R serial mechanism, a new synthesis procedure for the realization of a stiffness matrix with a 6-spring parallel mechanism is first developed. Then, this result is extended to a geometric construction-based synthesis procedure for two 3-joint serial mechanisms.
Issue Section:
Research Papers
References
1.
Huang
, S.
, and Schimmels
, J. M.
, 2017
, “Geometric Construction-Based Realization of Planar Elastic Behaviors With Parallel and Serial Manipulators
,” ASME. J. Mech. Rob.
, 9
(5
), p. 051006
. 2.
Huang
, S.
, and Schimmels
, J. M.
, 2018
, “Geometric Approach to the Realization of Planar Elastic Behaviors With Mechanisms Having Four Elastic Components
,” ASME. J. Mech. Rob.
, 10
(4
), p. 041004
. 3.
Huang
, S.
, and Schimmels
, J. M.
, 2019
, “Geometry Based Synthesis of Planar Compliances With Redundant Mechanisms Having Five Compliant Components
,” Mech. Mach. Theory
, 134
, pp. 645
–666
. 4.
Huang
, S.
, and Schimmels
, J. M.
, 2020
, “Synthesis of Planar Compliances With Mechanisms Having Six Compliant Components: Geometric Approach
,” ASME. J. Mech. Rob.
, 12
(3
), p. 031013
. 5.
Whitney
, D. E.
, and Nevins
, J. L.
, 1979
, “What Is the Remote Center Compliance (RCC) and What Can It Do
,” Proceedings of the 9th International Symposium and Exposition on Industrial Robots
, Washington, DC
, pp. 135
–152
.6.
Ball
, R. S.
, 1900
, A Treatise on the Theory of Screws
, Cambridge University Press
, London, UK
.7.
Dimentberg
, F. M.
, 1965
, The Screw Calculus and its Applications in Mechanics.
Foreign Technology Division, Wright-Patterson Air Force Base
, Dayton, Ohio
. Document No. FTD-HT-23-1632-67
.8.
Griffis
, M.
, and Duffy
, J.
, 1991
, “Kinestatic Control: A Novel Theory for Simultaneously Regulating Force and Displacement
,” ASME. J. Mech. Des.
, 113
(4
), pp. 508
–515
. 9.
Patterson
, T.
, and Lipkin
, H.
, 1993
, “Structure of Robot Compliance
,” ASME. J. Mech. Des.
, 115
(3
), pp. 576
–580
. 10.
Loncaric
, J.
, 1987
, “Normal Forms of Stiffness and Compliance Matrices
,” IEEE J. Rob. Autom.
, 3
(6
), pp. 567
–572
. 11.
Zefran
, M.
, and Kumar
, V.
, 2002
, “A Geometrical Approach to the Study of the Cartesian Stiffness Matrix
,” ASME. J. Mech. Des.
, 124
(1
), pp. 30
–38
. 12.
Huang
, S.
, and Schimmels
, J. M.
, 1998
, “The Bounds and Realization of Spatial Stiffnesses Achieved With Simple Springs Connected in Parallel
,” IEEE. Trans. Rob. Autom.
, 14
(3
), pp. 466
–475
. 13.
Roberts
, R. G.
, 1999
, “Minimal Realization of a Spatial Stiffness Matrix with Simple Springs Connected in Parallel
,” IEEE. Trans. Rob. Autom.
, 15
(5
), pp. 953
–958
. 14.
Ciblak
, N.
, and Lipkin
, H.
, 1999
, “Synthesis of Cartesian Stiffness for Robotic Applications
,” Proceedings of the IEEE International Conference on Robotics and Automation
, Detroit, MI
, pp. 2147
–2152
.15.
Huang
, S.
, and Schimmels
, J. M.
, 2002
, “The Duality in Spatial Stiffness and Compliance As Realized in Parallel and Serial Elastic Mechanisms
,” ASME J. Dyn. Syst., Meas. Control
, 124
(1
), pp. 76
–84
. 16.
Choi
, K.
, Jiang
, S.
, and Li
, Z.
, 2002
, “Spatial Stiffness Realization With Parallel Springs Using Geometric Parameters
,” IEEE. Trans. Rob. Autom.
, 18
(3
), pp. 264
–284
.17.
Hong
, M. B.
, and Choi
, Y. J.
, 2009
, “Screw System Approach to Physical Realization of Stiffness Matrix with Arbitrary Rank
,” ASME. J. Mech. Rob.
, 1
(2
), p. 021007
. 18.
Huang
, S.
, and Schimmels
, J. M.
, 2011
, “Realization of An Arbitrary Planar Stiffness With a Simple Symmetric Parallel Mechanism
,” ASME. J. Mech. Rob.
, 3
(4
), p. 041006
. 19.
Huang
, S.
, and Schimmels
, J. M.
, 2018
, “Geometric Construction-Based Realization of Spatial Elastic Behaviors in Parallel and Serial Manipulators
,” IEEE Trans. Rob.
, 34
(3
), pp. 764
–780
. 20.
Verotti
, M.
, and Belfiore
, N. P.
, 2016
, “Isotropic Compliance in E(3): Feasibility and Workspace Mapping
,” ASME. J. Mech. Rob.
, 8
(6
), p. 061005
. 21.
Verotti
, M.
, Masarati
, P.
, Morandini
, M.
, and Belfiore
, N.
, 2016
, “Isotropic Compliance in the Special Euclidean Group SE(3)
,” Mech. Mach. Theory
, 98
, pp. 263
–281
. 22.
Su
, H.-J.
, Dorozhin
, D.
, and Vance
, J.
, 2009
, “A Screw Theory Approach for the Conceptual Design of Flexible Joints for Compliant Mechanisms
,” ASME. J. Mech. Rob.
, 1
(4
), p. 041009
. 23.
Yu
, J.
, Li
, S.
, Su
, H.-J.
, and Culpepper
, M. L.
, 2011
, “Screw Theory Based Methodology for the Deterministic Type Synthesis of Flexure Mechanisms
,” ASME. J. Mech. Rob.
, 3
(3
), p. 031008
. 24.
Simaan
, N.
, and Shoham
, M.
, 2003
, “Stiffness Synthesis of a Variable Geometry Six-Degrees-of-Freedom Double Planar Parallel Robot
,” Int. J. Rob. Res.
, 22
(9
), pp. 757
–775
. 25.
Wen
, K.
, Shin
, C.-B.
, Seo
, T.-W.
, and Lee
, J.-W.
, 2016
, “Stiffness Synthesis of 3-DOF Planar 3RPR Parallel Mechanisms
,” Robotica
, 34
(12
), pp. 2776
–2787
. 26.
Cutkosky
, M. R.
, and Kao
, I.
, 1989
, “Computing and Controlling the Compliance of a Robotic Hand
,” IEEE. Trans. Rob. Autom.
, 5
(2
), pp. 617
–622
.27.
Huang
, S.
, and Schimmels
, J. M.
, 2022
, “The Relationship Between Mechanism Geometry and the Centers of Stiffness and Compliance
,” Mech. Mach. Theory
, 167
, p. 104565
. Copyright © 2022 by ASME
You do not currently have access to this content.