Abstract

This paper presents a mechanism design optimization for actuating the horizontal stabilizers of an aircraft using a rotating empennage without a vertical stabilizer. Birds do not have vertical stabilizers and rotate their tail feathers to control agile maneuvers. A rotating empennage concept will mimic this motion and enable the bio-inspired flight of a fixed wing aircraft. To maintain control, the bio-inspired rotating empennage will incorporate three degrees of freedom: independent rotation of each horizontal stabilizer and rotation of the empennage relative to the main axis of the fuselage. The primary benefits of an aircraft without a vertical stabilizer are reduced drag and weight which, in turn, results in a more efficient operation. In order to reduce inertia of the rotating empennage, the linear actuators that position the horizontal stabilizers will be placed within the fuselage. Mechanisms that couple the linear translation of the actuators with the rotation of the horizontal stabilizers ideally require a low peak force and short stroke from the actuator. With two conflicting objectives, a Pareto front optimization was conducted to determine appropriate link lengths of candidate solutions and to understand the effectiveness of alternate mechanisms. The study considers rack & pinon, scotch-yoke, slider-crank, inverted slider-crank, Watt II, and Stephenson III mechanisms.

References

1.
Bras
,
M.
,
Vale
,
J.
,
Lau
,
F.
, and
Suleman
,
A.
,
2013
, “
Flight Dynamics and Control of a Vertical Tailless Aircraft
,”
J. Aeronaut. Aerospace Eng.
,
2
(
4
), p.
1000119
.
2.
Insinna
,
V.
,
2019
, “
The US Air Force’s Radical Plan for a Future Fighter Could Field a Jet in 5 Years
.”
Defense News
,
Sept. 16
.
3.
Hunsaker
,
D. F.
,
Phillips
,
W. F.
, and
Joo
,
J. J.
,
2017
, “
Aerodynamic Shape Optimization of Morphing Wings at Multiple Flight Conditions
.”
Proceedings of the SciTech Forum
,
Grapevine, TX
,
Jan. 9–13
,
AIAA Paper No. 1420
.
4.
Plack
,
T.
,
2019
, “
Red Kites in Flight/Close Up
.”
YouTube Video
, Accessed February 17, 2022.
5.
Pennycuick
,
C. J.
,
1975
, “Mechanics of Flight,”
Avian Biology
, Vol.
5
,
D. S.
Farner
, and
J. R.
King
, eds.,
Academic Press
,
London
, pp.
1
75
.
6.
Thomas
,
A. L. R.
,
1997
, “
On the Tails of Birds
,”
BioScience
,
47
(
4
), pp.
215
225
.
7.
Hoey
,
R. G.
,
2010
, “
Exploring Bird Aerodynamics Using Radio-Controlled Models
,”
Bioinspir. Biomim.
,
5
(
4
), p.
045008
.
8.
Shaw
,
R.
,
1996
,
F-16 Fighting Falcon
,
Motorbooks International
,
Beverly, MA
.
9.
Bolander
,
C. R.
,
Hunsaker
,
D. F.
,
Phillips
,
W. F.
, and
Joo
,
J. J.
,
2017
, “
Control Power and Required Actuation Rates of a Bio-inspired Rotating Empennage for a Fighter Aircraft
,”
Proceedings of the SciTech Forum
,
San Diego, CA
,
Jan. 3–7, 2022
,
AIAA
.
10.
Earley
,
B.H.
,
1977
, “
Objectives for the Design of Improved Actuation Systems
,”
Integrity in Electronic Flight Control Systems
, AGARD-AF-224, p.
18-1
13
.
11.
Alle
,
N.
,
Hiremath
,
S.
,
Makaram
,
S.
,
Subramaniam
,
K.
, and
Talukdar
,
A.
,
2016
, “
Review on Electro-Hydrostatic Actuator for Flight Control
,”
Int. J. Fluid Power
,
17
(
1
), pp.
125
145
.
12.
Chakraborty
,
I.
,
Mavris
,
D.
,
Emeneth
,
M.
, and
Schneegans
,
A.
,
2014
, “
A Methodology for Vehicle and Mission Level Comparison of More Electric Aircraft Subsystem Solutions: Application to the Flight Control Actuation System
,”
Proc. Inst. Mech. Eng. G. J. Aerosp. Eng.
,
229
(
6
), pp.
1088
1102
.
13.
Park
,
J.
,
Jeong
,
W.
,
Seo
,
Y.
, and
Yoo
,
W.
,
2007
, “
Optimization of Crank Angles to Reduce Excitation Forces and Moments in Engines
,”
J. Mech. Sci. Technol.
,
21
(
2
), pp.
272
281
.
14.
Farmani
,
M.
,
Jaamialahmadi
,
A.
, and
Babaie
,
M.
,
2011
, “
Multiobjective Optimization for Force and Moment Balance of a Four-Bar Linkage Using Evolutionary Algorithms
,”
J. Mech. Sci. Technol.
,
25
(
12
), pp.
2971
2977
.
15.
Shin
,
K.
,
Yoo
,
Y.
, and
Kim
,
J.
,
2012
, “
Coupled Linkage System Optimization for Minimum Power Consumption
,”
J. Mech. Sci. Technol.
,
26
(
4
), pp.
1099
1106
.
16.
Miettinen
,
K.
,
1999
,
Nonlinear Multiobjective Optimization
,
Springer Science & Business Media
,
New York
.
17.
Shankaran
,
S.
, and
Barr
,
B.
,
2011
, “
Efficient Gradient-Based Algorithms for the Construction of Pareto Fronts
,”
ASME Turbo Expo
,
Vancouver, British Columbia, Canada
,
June 6–10
, pp.
1077
1090
.
18.
Bendsøe
,
M. P.
, and
Sigmund
,
O.
,
2003
,
Topology Optimization: Theory, Methods, and Applications
,
Springer
,
Berlin
.
19.
Butcher
,
D.N.
,
1982
, “
Non-honeycomb F-16 Horizontal Stabilizer Structural Design
,”
Congress of the International Council of the Aeronautical Sciences
,
Seattle, WA
,
Aug. 22–27
,
AIAA
, pp.
586
592
.
20.
Wu
,
S.
,
Yu
,
B.
,
Jiao
,
Z.
, and
Shang
,
Y.
,
2016
, “
Preliminary Design and Multi-objective Optimization of a Electro-Hydrostatic Actuator
,”
Proc. Inst. Mech. Eng. G. J. Aerosp. Eng.
,
231
(
7
), pp.
1258
1268
.
21.
Haimes
,
Y.
,
Lasdon
,
L.
, and
Wismer
,
D.
,
1971
, “
On a Bicriterion Formulation of the Problems of Integrated System Identification and System Optimization
,”
IEEE Trans. Syst. Man and Cybernet.
,
1
(
3
), pp.
296
297
.
22.
American Gear Manufacturers Association
,
2004
, “
Fundamental Rating Factors and Calculation Methods for Involute Spur and Helical Gear Teeth
,”
AGMA standard
,
Alexandria, VA
.
You do not currently have access to this content.