Abstract

In this paper, the use of the Kresling tower origami as a building block for compliant mechanism design is considered. To help building systems using this origami, models are derived to link the origami pattern geometry to the Kresling tower characteristics. This includes the position of stable configurations, the helical trajectory describing the motion and the orientation of panels during the tower deployment. The provided analytical expressions are helpful to adjust the tower geometry according to desired specification. In addition, an original modification of fold geometry is introduced to modify the tower stiffness. Material removal at specific locations, where maximum fold deformations occur, aims at reducing the actuation force without affecting the kinematics. Experimental evaluation is conducted to assess the relevance of the proposed models and evaluate the impact of fold line modification. The proposed simplified models are precise enough for the synthesis. The capacity to strongly reduce the actuation force, due to the fold line modification, is observed.

References

1.
Greenberg
,
H.
,
Gong
,
M.
,
Magleby
,
S.
, and
Howell
,
L.
,
2011
, “
Identifying Links Between Origami and Compliant Mechanisms
,”
Mech. Sci.
,
2
(
2
), pp.
217
225
.
2.
Liu
,
T.
,
Wang
,
Y.
, and
Lee
,
K.
,
2017
, “
Three-Dimensional Printable Origami Twisted Tower: Design, Fabrication, and Robot Embodiment
,”
IEEE Rob. Auto. Lett.
,
3
(
1
), pp.
116
123
.
3.
Zirbel
,
S. A.
,
Lang
,
R. J.
,
Thomson
,
M. W.
,
Sigel
,
D. A.
,
Walkemeyer
,
P. E.
,
Trease
,
B. P.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2013
, “
Accommodating Thickness in Origami-Based Deployable Arrays
,”
ASME J. Mech. Des.
,
135
(
11
), p.
111005
.
4.
Onal
,
C. D.
,
Tolley
,
M. T.
,
Wood
,
R. J.
, and
Rus
,
D.
,
2014
, “
Origami-Inspired Printed Robots
,”
IEEE/ASME Trans. Mech.
,
20
(
5
), pp.
2214
2221
.
5.
Belke
,
C. H.
, and
Paik
,
J.
,
2017
, “
Mori: A Modular Origami Robot
,”
IEEE/ASME Trans. Mech.
,
22
(
5
), pp.
2153
2164
.
6.
Berre
,
J.
,
Geiskopf
,
F.
,
Rubbert
,
L.
, and
Renaud
,
P.
,
2021
, “Origami-Inspired Design of a Deployable Wheel,”
New Advances in Mechanisms, Mechanical Transmissions and Robotics
,
E.-C.
Lovasz
,
I.
Maniu
,
I.
Doroftei
,
M.
Ivanescu
, and
C.-M.
Gruescu
, eds.,
Springer Nature
,
Cham, Switzerland
, pp.
114
126
.
7.
Bhovad
,
P.
, and
Li
,
S.
,
2018
, “Using Multi-Stable Origami Mechanism for Peristaltic Gait Generation: A Case Study,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
5B
,
Quebec City, Quebec, Canada
,
American Society of Mechanical Engineers
.
8.
Sargent
,
B.
,
Butler
,
J.
,
Seymour
,
K.
,
Bailey
,
D.
,
Jensen
,
B.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
An Origami-Based Medical Support System to Mitigate Flexible Shaft Buckling
,”
ASME J. Mech. Rob.
,
12
(
4
), p.
041005
.
9.
Wu
,
S.
,
Ze
,
Q.
,
Dai
,
J.
,
Udipi
,
N.
,
Paulino
,
G. H.
, and
Zhao
,
R.
,
2021
, “
Stretchable Origami Robotic Arm With Omnidirectional Bending and Twisting
,”
Proc. Natl. Acad. Sci. U. S. A.
,
118
(
36
), p.
e2110023118
.
10.
Hwang
,
H.-Y.
,
2021
, “
Effects of Perforated Crease Line Design on Mechanical Behaviors of Origami Structures
,”
Int. J. Solids. Struct.
,
230
, p.
111158
.
11.
Filipov
,
E. T.
,
Tachi
,
T.
, and
Paulino
,
G. H.
,
2015
, “
Origami Tubes Assembled Into Stiff, Yet Reconfigurable Structures and Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
112
(
40
), pp.
12321
12326
.
12.
Angatkina
,
O.
,
Chien
,
B.
,
Pagano
,
A.
,
Yan
,
T.
,
Alleyne
,
A.
,
Tawfick
,
S.
, and
Wissa
,
A.
,
2017
, “A Metameric Crawling Robot Enabled by Origami and Smart Materials,”
Smart Materials, Adaptive Structures and Intelligent Systems
, Vol.
1
,
American Society of Mechanical Engineers
,
Snowbird, UT
.
13.
Moon
,
Y.-M.
,
Trease
,
B. P.
, and
Kota
,
S.
,
2004
, “
Design of Large-Displacement Compliant Joints
,”
ASME J. Mech. Des.
,
127
(
4
), pp.
788
789
.
14.
Rubbert
,
L.
,
Bitterli
,
R.
,
Ferrier
,
N.
,
Fifanski
,
S.
,
Vardi
,
I.
, and
Henein
,
S.
,
2016
, “
Isotropic Springs Based on Parallel Flexure Stages
,”
Precis. Eng.
,
43
, pp.
132
145
. .
15.
Merriam
,
E. G.
,
2016
, “Thesis: Stiffness Reduction Strategies for Additively Manufactured Compliant Mechanisms,”
Brigham Young University
,
Provo, UT
.
16.
Kresling
,
B.
,
2008
, “
Natural Twist Buckling in Shells: From the Hawkmoth’s Bellows to the Deployable Kresling-pattern and Cylindrical Miura-ori
,”
Proceedings of the 6th International Conference on Computation of Shell and Spatial Structures, IASS-IACM 2008
, pp.
1
4
.
17.
Jape
,
S.
,
Garza
,
M.
,
Ruff
,
J.
,
Espinal
,
F.
,
Sessions
,
D.
,
Huff
,
G.
,
Lagoudas
,
D. C.
,
Hernandez
,
E. A. P.
, and
Hartl
,
D. J.
,
2020
, “
Self-Foldable Origami Reflector Antenna Enabled by Shape Memory Polymer Actuation
,”
Smart Mater. Struct.
,
29
(
11
), p.
115011
.
18.
Nojima
,
T.
,
2002
, “
Modelling of Folding Patterns in Flat Membranes and Cylinders by Origami
,”
JSME. Int. J. C-Mech. Syst. Mach. Elem. Manuf.
,
45
(
1
), pp.
364
370
.
19.
Guest
,
S. D.
, and
Pellegrino
,
S.
,
1994
, “
The Folding of Triangulated Cylinders, Part I: Geometric Considerations
,”
ASME J. Appl. Mech.
,
61
(
4
), pp.
773
777
.
20.
Pagano
,
A.
,
Yan
,
T.
,
Chien
,
B.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2017
, “
A Crawling Robot Driven by Multi-Stable Origami
,”
Smart Mater. Struct.
,
26
(
9
), p.
094007
.
21.
Zhang
,
Q.
,
Cai
,
J.
,
Li
,
M.
, and
Feng
,
J.
,
2015
, “
Bistable Behaviour of a Deployable Cylinder with Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
.
22.
Lang
,
R. J.
,
2017
,
Twists, Tilings, and Tessellations: Mathematical Methods for Geometric Origami
,
CRC Press
,
Boca Raton, FL
.
23.
Tachi
,
T.
,
2010
, “Geometric Considerations for the Design of Rigid Origami Structures,”
Proceedings of the International Association for Shell and Spatial Structures (IASS) Symposium
, Vol.
12
,
Elsevier Ltd
,
Shanghai, China
, pp.
458
460
.
24.
Filipov
,
E.
,
Liu
,
K.
,
Tachi
,
T.
,
Schenk
,
M.
, and
Paulino
,
G. H.
,
2017
, “
Bar and Hinge Models for Scalable Analysis of Origami
,”
Int. J. Solids. Struct.
,
124
, pp.
26
45
.
25.
Zhai
,
Z.
,
Wang
,
Y.
, and
Jiang
,
H.
,
2018
, “
Origami-Inspired, On-Demand Deployable and Collapsible Mechanical Metamaterials With Tunable Stiffness
,”
Proc. Natl. Acad. Sci. U. S. A.
,
115
(
9
), pp.
2032
2037
.
26.
Liu
,
K.
, and
Paulino
,
G.
,
2017
, “
Nonlinear Mechanics of Non-Rigid Origami: An Efficient Computational Approach
,”
Proc. R. Soc. A: Math., Phys. Eng. Sci.
,
473
(
2206
), p.
20170348
.
27.
Pagano
,
A.
,
Leung
,
B.
,
Chien
,
B.
,
Yan
,
T.
,
Wissa
,
A.
, and
Tawfick
,
S.
,
2016
, “
Multi-Stable Origami Structure for Crawling Locomotion
,”
Smart Materials, Adaptive Structures and Intelligent Systems, Vol. 2: Modeling, Simulation and Control; Bio-Inspired Smart Materials and Systems; Energy Harvesting
, p.
V002T06A005
.
28.
Qiu
,
J.
,
Lang
,
J. H.
, and
Slocum
,
A. H.
,
2004
, “
A Curved-Beam Bistable Mechanism
,”
J. Microelectromech. Syst.
,
13
(
2
), pp.
137
146
.
29.
Nayakanti
,
N.
,
2016
, “
Thesis: Flexigami: Folded Polygonal Unit Cells for Deployable Metamaterials and Mechanisms
,”
Massachusetts Institute of Technology
,
Cambridge, MA
.
30.
Yellowhorse
,
A.
, and
Howell
,
L. L.
,
2018
, “
Three Approaches for Managing Stiffness in Origami-inspired Mechanisms
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
, Vol.
51814
,
American Society of Mechanical Engineers
, p.
V05BT07A056
.
31.
Jianguo
,
C.
,
Xiaowei
,
D.
,
Ya
,
Z.
,
Jian
,
F.
, and
Yongming
,
T.
,
2015
, “
Bistable Behavior of the Cylindrical Origami Structure With Kresling Pattern
,”
ASME J. Mech. Des.
,
137
(
6
), p.
061406
.
32.
Butler
,
J.
,
Morgan
,
J.
,
Pehrson
,
N.
,
Tolman
,
K.
,
Bateman
,
T.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Highly Compressible Origami Bellows for Harsh Environments
,”
Proceedings of the ASME 2016 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Vol. 5B: 40th Mechanisms and Robotics Conference
, p.
V05BT07A001
.
You do not currently have access to this content.