Abstract

The finite degree of freedom (DOF) of a mechanism is determined by the number of independent loop constraints. In this paper, a method to determine the maximal number of loop closure constraints (which is independent of a specific configuration) of multiloop linkages is introduced and applied to calculate the finite DOF. It rests on an algebraic condition on the joint screws, which stems from the analytic condition that minors of certain rank and their higher derivatives vanish. A computational algorithm is presented to determine the maximal rank of the constraint Jacobian in an arbitrary (possibly singular) reference configuration. This algorithm involves screw products of constant screw vectors only. Unlike the Lie group methods for estimating the DOF of so-called exceptional linkages, this method does not rely on partitioning kinematic loops into partial kinematic chains, and it is applicable to multiloop linkages. The DOF computed with this method is at least as accurate as the DOF computed with the Lie group methods. It gives the correct DOF for any (possibly overconstrained) linkage where the constraint Jacobian has maximal rank in regular configurations. The so determined maximal rank has further significance for classifying linkages as being exceptional or paradoxical but also for detecting singularities and shaky linkages.

References

1.
Gogu
,
G.
,
2005
, “
Mobility of Mechanisms: A Critical Review
,”
Mech. Mach. Theory.
,
40
(
9
), pp.
1068
1097
.
2.
Hervé
,
J. M.
,
1978
, “
Analyse structurelle des mécanismes par groupe des déplacements
,”
Mech. Mach. Theory
,
13
(
4
), pp.
437
450
.
3.
Hervé
,
J. M.
,
1982
, “
Intrinsic Formulation of Problems of Geometry and Kinematics of Mechanisms
,”
Mech. Mach. Theory
,
17
(
3
), pp.
179
184
.
4.
Rico
,
J. M.
, and
Ravani
,
B.
,
2002
, “Group Theory Can Explain the Mobility of Paradoxical Linkages,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
F.
Thomas
, eds.,
Springer
,
Dordrecht
, pp.
245
254
.
5.
Martinez
,
J. R.
, and
Ravani
,
B.
,
2003
, “
On Mobility Analysis of Linkages Using Group Theory
,”
ASME J. Mech. Des.
,
125
(
1
), pp.
70
80
.
6.
Martinez
,
J. R.
,
Gallardo
,
J.
, and
Ravani
,
B.
,
2003
, “
Lie Algebra and the Mobility of Kinematic Chains
,”
J. Rob. Syst.
,
20
(
8
), pp.
477
499
.
7.
Rico
,
J.
, and
Ravani
,
B.
,
2007
, “
On Calculating the Degrees of Freedom Or Mobility of Overconstrained Linkages: Single-loop Exceptional Linkages
,”
ASME J. Mech. Des.
,
129
(
3
), pp.
301
311
.
8.
Rico
,
J. M.
,
Cervantes
,
J. J.
,
Rocha
,
J.
,
Gallardo
,
J.
,
Aguilera
,
L. D.
,
Perez
,
G. I.
, and
Tadeo
,
A.
,
2007
, “
Mobility of Single Loop Linkages: a Final Word
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Las Vegas, NV
,
Sept. 4–7
, Vol. 48094, pp.
1265
1273
.
9.
Rico
,
J.
,
Aguilera
,
L. D.
,
Gallardo
,
J.
,
Rodriguez
,
R.
,
Orozco
,
H.
, and
Barrera
,
J. M.
,
2006
, “
A More General Mobility Criterion for Parallel Platforms
,”
ASME J. Mech. Des.
,
128
(
1
), pp.
207
219
.
10.
Sanchez-Garcia
,
A.
,
Rico
,
J.
,
Cervantes-Sanchez
,
J.
, and
Lopez-Custodio
,
P. C.
,
2021
, “
A Mobility Determination Method for Parallel Platforms Based on the Lie Algebra of Se(3) and Its Subspaces
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031015
.
11.
Gogu
,
G.
,
2005
, “
Mobility and Spatiality of Parallel Robots Revisited Via Theory of Linear Transformations
,”
Eur. J. Mechan. A/Solids
,
24
(
4
), pp.
690
711
.
12.
Gogu
,
G.
,
2005
, “
Chebychev–Grübler–Kutzbach’s Criterion for Mobility Calculation of Multi-loop Mechanisms Revisited Via Theory of Linear Transformations
,”
Eur. J. Mechan. A/Solids
,
24
(
3
), pp.
427
441
.
13.
Mavroidis
,
C.
, and
Roth
,
B.
,
1994
, “
Analysis and Synthesis of Overconstrained Mechanism
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Minneapolis, MN
,
Sept. 11–14
, pp.
115
133
.
14.
Fayet
,
M.
,
1995
, “
Mécanismes multi-boucles — I détermination des espaces de torseurs cinématiques dans un mécanisme multi-boucles quelconque
,”
Mech. Mach. Theory.
,
30
(
2
), pp.
201
217
.
15.
Wohlhart
,
K.
,
2004
, “Screw Spaces and Connectivities in Multiloop Linkages,”
On Advances in Robot Kinematics
,
Lenarčič
,
J.
,
Galletti
,
C.
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
97
104
.
16.
Dai
,
J.
,
Huang
,
Z.
, and
Lipkin
,
H.
,
2006
, “
Mobility of Overconstrained Parallel Mechanisms
,”
J. Mech. Eng.
,
128
(
1
), pp.
220
229
.
17.
Gogu
,
G.
,
2008
,
Structural Synthesis of Parallel Robots, Part 1: Methodology
,
Springer
,
Dordrecht
.
18.
Martinez
,
J. R.
,
Gallardo
,
J.
, and
Duffy
,
J.
,
1999
, “
Screw Theory and Higher Order Kinematic Analysis of Open Serial and Closed Chains
,”
Mech. Mach. Theory
,
34
(
4
), pp.
559
586
.
19.
Müller
,
A.
,
2016
, “
Local Kinematic Analysis of Closed-Loop Linkages-Mobility, Singularities, and Shakiness
,”
ASME J. Mech. Rob.
,
8
(
4
), p.
041013
.
20.
Müller
,
A.
,
2019
,
Singular Configurations of Mechanisms and Manipulators, Ser. CISM 589
,
A.
Müller
, and
D.
Zlatanov
, eds.,
Springer
,
Cham
, pp.
181
229
.
21.
Müller
,
A.
,
2019
, “
Kinematic Tangent Cone – A Useful Concept for The Local Mobility and Singularity Analysis
,”
15th IFToMM World Congress in Mechanism and Machine Science
,
Krakow, Poland
,
June 30–July 4
.
22.
Müller
,
A.
,
2019
, “
An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains Wit Applications in Robotics and Mechanism Theory
,”
Mech. Mach. Theory
,
142
, pp.
103
594
.
23.
Müller
,
A.
,
2018
, “
Topology, Kinematics, and Constraints of Multi-loop Linkages
,”
Robotica
,
36
(
11
), pp.
1641
1663
.
24.
Müller
,
A.
,
2009
, “
Generic Mobility of Rigid Body Mechanisms
,”
Mech. Mach. Theory
,
44
(
6
), pp.
1240
1255
.
25.
Selig
,
J.
,
2005
,
Geometric Fundamentals of Robotics
,
Springer
,
New York
.
26.
Aguilera
,
D.
,
Rico
,
J. M. A.
, and
Gallardo
,
J.
,
2002
, “
Computer Implementation of An Improved Kutzbach–Grübler Mobility Criterion
,”
International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
,
Montreal, CA
,
Sept. 29–Oct. 2
, Vol. 36223, pp.
549
557
.
27.
Carricato
,
M.
, and
Parenti-Castelli
,
V.
,
2002
, “
Singularity-Free Fully-Isotropic Translational Parallel Mechanisms
,”
Int. J. Robot. Res.
,
21
(
2
), pp.
161
174
.
28.
Gosselin
,
C.
, and
Kong
,
X.
,
2002
, “
Kinematics and Singularity Analysis of a Novel Type of 3-crr 3-dof Translational Parallel Manipulator
,”
Int. J. Robot. Res.
,
21
(
9
), pp.
791
798
.
29.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2002
, “Type Synthesis of Linear Translational Parallel Manipulators,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
F.
Thomas
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
453
462
.
30.
Kim
,
H. S.
, and
Tsai
,
L.-W.
,
2002
, “Evaluation of a Cartesian Parallel Manipulator,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
F.
Thomas
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
21
28
.
31.
Kim
,
H.
, and
Tsai
,
L.
,
2003
, “
Design Optimization of a Cartesian Parallel Manipulator
,”
ASME. J. Mech. Des.
,
125
(
1
), pp.
43
51
.
32.
McCarthy
,
J. M.
, and
Soh
,
G. S.
,
2010
,
Geometric Design of Linkages
, Vol.
11
,
Springer
,
New York
.
33.
Fayet
,
M.
,
1995
, “
Mécanismes multi-boucles—iii hyperstatisme au sens de la dynamique et au sens de la cinématique-dualite
,”
Mech. Mach. Theory.
,
30
(
2
), pp.
233
252
.
34.
Huynh
,
P.
, and
Herve
,
J. M.
,
2005
, “
Equivalent Kinematic Chains of Three Degree-of-Freedom Tripod Mechanisms with Planar-Spherical Bonds
,”
ASME J. Mech. Des.
,
127
(
1
), pp.
95
102
.
35.
Müller
,
A.
,
2019
, “
Data for: An Overview of Formulae for the Higher-Order Kinematics of Lower-Pair Chains wit Applications in Robotics and Mechanism Theory
,”
Mendeley Data, V1.
36.
Diez-Martínez
,
C. R.
,
Rico
,
J. M.
,
Cervantes-Sánchez
,
J. J.
, and
Gallardo
,
J.
,
2006
, “Mobility and Connectivity in Multiloop Linkages,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
B.
Roth
, eds.,
Springer Netherlands
,
Dordrecht
, pp.
455
464
.
37.
Müller
,
A.
,
2020
, “Wohlhart’s Three-Loop Mechanism: An Overconstrained and Shaky Linkage,”
Advances in Robot Kinematics
,
J.
Lenarčič
, and
B.
Siciliano
, eds.,
Springer
,
Cham
, pp.
125
132
.
38.
Wu
,
Y.
, and
Carricato
,
M.
,
2018
, “
Line-Symmetric Motion Generators
,”
Mech. Mach. Theory.
,
127
, pp.
112
125
.
You do not currently have access to this content.