Abstract

Mobile robots with manipulation capability are a key technology that enables flexible robotic interactions, large area covering and remote exploration. This paper presents a novel class of actuation-coordinated mobile parallel robots (ACMPRs) that utilize parallel mechanism configurations and perform hybrid moving and manipulation functions through coordinated wheel actuators. The ACMPRs differ with existing mobile manipulators by their unique combination of the mobile wheel actuators and the parallel mechanism topology through prismatic joint connections. Common motion of the wheels will provide mobile function while their relative motion will actuate the parallel manipulation function. This new concept reduces actuation requirement and increases manipulation accuracy and mobile motion stability through coordinated and connected wheel actuators comparing with existing mobile parallel manipulators. The relative wheel location on the base frame also enables a reconfigurable base size with variable moving stability on the ground. The basic concept and general type synthesis are introduced and followed by kinematics and inverse dynamics analysis of a selected three limb ACMPR. A numerical simulation also illustrates the dynamics model and the motion property of the new mobile parallel robot (MPR) followed by a prototype-based experimental validation. The work provides a basis for introducing this new class of robots for potential applications in surveillance, industrial automation, construction, transportation, human assistance, medical applications, and other operations in extreme environment such as nuclear plants, Mars, etc.

References

1.
Rubio
,
F.
,
Valero
,
F.
, and
Llopis-Albert
,
C.
,
2019
, “
A Review of Mobile Robots: Concepts, Methods, Theoretical Framework, and Applications
,”
Int. J. Adv. Robot. Syst.
,
16
(
2
), pp.
1
22
.
2.
Ciocarlie
,
M.
,
Hsiao
,
K.
,
Leeper
,
A.
, and
Gossow
,
D.
,
2012
, “
Mobile Manipulation Through an Assistive Home Robot
,”
IEEE Int. Conf. Intell. Robot. Syst.
, pp.
5313
5320
.
3.
Han
,
Z.
,
Allspaw
,
J.
,
Lemasurier
,
G.
,
Parrillo
,
J.
,
Giger
,
D.
,
Reza Ahmadzadeh
,
S.
, and
Yanco
,
H. A.
,
2020
, “
Towards Mobile Multi-Task Manipulation in a Confined and Integrated Environment With Irregular Objects
,”
arXiv. 11025–11031
.
4.
Dömel
,
A.
,
Kriegel
,
S.
,
Kaßecker
,
M.
,
Brucker
,
M.
,
Bodenmuller
,
T.
, and
Suppa
,
M.
,
2017
, “
Toward Fully Autonomous Mobile Manipulation for Industrial Environments
,”
Int. J. Adv. Robot. Syst.
,
14
(
4
), pp.
1
19
.
5.
Song
,
T.
,
Xi
,
F.
,
Guo
,
S.
, and
Lin
,
Y.
,
2016
, “
Optimization of a Mobile Platform for a Wheeled Manipulator
,”
ASME J. Mech. Rob.
,
8
(
6
), p. 061007.
6.
Li
,
Y.
,
Xu
,
Q.
, and
Liu
,
Y.
,
2006
, “
Novel Design and Modeling of a Mobile Parallel Manipulator
,”
Proc. IEEE Int. Conf. Robot. Autom.
, pp.
1135
1140
.
7.
Chen
,
Y.
,
Wang
,
W.
,
Abdollahi
,
Z.
,
Wang
,
Z.
,
Schulte
,
J.
,
Krovi
,
V.
, and
Jia
,
Y.
,
2018
, “
A Robotic Lift Assister: A Smart Companion for Heavy Payload Transport and Manipulation in Automotive Assembly
,”
IEEE Robot. Autom. Mag.
,
25
(
2
), pp.
107
119
.
8.
Ding
,
X.
, and
Chen
,
H.
,
2016
, “
Dynamic Modeling and Locomotion Control for Quadruped Robots Based on Center of Inertia on SE(3)
,”
ASME J. Dyn. Syst. Meas. Contr.
,
138
(
1
), p. 011004.
9.
Geilinger
,
M.
,
Winberg
,
S.
, and
Coros
,
S.
,
2020
, “
A Computational Framework for Designing Skilled Legged-Wheeled Robots
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
3674
3681
.
10.
Geilinger
,
M.
,
Poranne
,
R.
,
Desai
,
R.
,
Thomaszewski
,
B.
, and
Coros
,
S.
,
2018
, “
Skaterbots: Optimization-Based Design and Motion Synthesis for Robotic Creatures With Legs and Wheels
,”
ACM Trans. Graph.
,
37
(
4
), pp.
1
12
.
11.
Zhou
,
X.
,
Alamdari
,
A.
, and
Krovi
,
V.
,
2013
, “
Articulated Wheeled Vehicles: Back to the Future?
,”
Mech. Mach. Sci.
,
14
, pp.
227
238
.
12.
Tang
,
C. P.
, and
Krovi
,
V. N.
,
2007
, “
Manipulability-Based Configuration Evaluation of Cooperative Payload Transport by Mobile Manipulator Collectives
,”
Robotica
,
25
(
1
), pp.
29
42
.
13.
Bjelonic
,
M.
,
Sankar
,
P. K.
,
Bellicoso
,
C. D.
,
Vallery
,
H.
, and
Hutter
,
M.
,
2020
, “
Rolling in the Deep—Hybrid Locomotion for Wheeled-Legged Robots Using Online Trajectory Optimization
,”
IEEE Robot. Autom. Lett.
,
5
(
2
), pp.
3626
3633
.
14.
Jun
,
S. K.
,
White
,
G. D.
, and
Krovi
,
V. N.
,
2006
, “
Kinetostatic Design Considerations for an Articulated Leg-Wheel Locomotion Subsystem
,”
ASME J. Dyn. Syst. Meas. Contr.
,
128
(
1
), pp.
112
121
.
15.
Liu
,
X. J.
,
Xie
,
F.
,
Gong
,
Z.
, and
Shentu
,
S.
,
2018
, “
Kinematics Analysis and Motion Control of a Mobile Robot Driven by Three Tracked Vehicles
,”
Proc. ASME Des. Eng. Tech. Conf.
,
5A
, pp.
1
9
.
16.
Voyles
,
R. M.
, and
Larson
,
A. C.
,
2005
, “
TerminatorBot: A Novel Robot With Dual-Use Mechanism for Locomotion and Manipulation
,”
IEEE/ASME Trans. Mechatron.
,
10
(
1
), pp.
17
25
.
17.
Voyles
,
R. M.
, and
Godzdanker
,
R.
,
2008
, “
Side-Slipping Locomotion of a Miniature, Reconfigurable Limb/Tread Hybrid Robot
,”
Proc. 2008 IEEE Int. Work. Safety, Secur. Rescue Robot.
, pp.
58
64
.
18.
Pedemonte
,
N.
,
Rasheed
,
T.
,
Marquez-Gamez
,
D.
,
Long
,
P.
,
Hocquard
,
É
,
Babin
,
F.
,
Fouché
,
C.
,
Caverot
,
G.
,
Girin
,
A.
, and
Caro
,
S.
,
2020
, “
FASTKIT: A Mobile Cable-Driven Parallel Robot for Logistics
,”
Springer Tracts Adv. Robot.
,
132
, pp.
141
163
.
19.
Ben-Horin
,
R.
,
Shoham
,
M.
, and
Djerassi
,
S.
,
1998
, “
Kinematics, Dynamics and Construction of a Planarly Actuated Parallel Robot
,”
Robot. Comput. Integr. Manuf.
,
14
(
2
), pp.
163
172
.
20.
Horin
,
P. B.
,
Djerassi
,
S.
,
Shoham
,
M.
, and
Horin
,
R. B.
,
2006
, “
Dynamics of a Six Degrees-of-Freedom Parallel Robot Actuated by Three Two-Wheel Carts
,”
Multibody Syst. Dyn.
,
16
(
2
), pp.
105
121
.
21.
Hu
,
Y.
,
Zhang
,
J.
,
Wan
,
Z.
, and
Lin
,
J.
,
2011
, “
Design and Analysis of a 6-DOF Mobile Parallel Robot With 3 Limbs
,”
J. Mech. Sci. Technol.
,
25
(
12
), pp.
3215
3222
.
22.
Olarra
,
A.
,
Allen
,
J. M.
, and
Axinte
,
D. A.
,
2014
, “
Experimental Evaluation of a Special Purpose Miniature Machine Tool With Parallel Kinematics Architecture: Free Leg Hexapod
,”
Precis. Eng.
,
38
(
3
), pp.
589
604
.
23.
Sidibe
,
M. B.
,
Fu
,
Y. L.
, and
Ma
,
Y.
,
2007
, “
Wheeled Mobile Robot Actuations of a Multiple Degrees-of-Freedom Parallel Manipulator
,”
Proc. WSEAS Int. Conf. Circuits, Syst. Signal Telecommun.
, pp.
65
70
.
24.
Yang
,
H.
,
Krut
,
S.
,
Pierrot
,
F.
, and
Baradat
,
C.
,
2011
, “
On the Design of Mobile Parallel Robots for Large Workspace Applications
,”
Proc. ASME Des. Eng. Tech. Conf.
,
6
, pp.
767
776
.
25.
Shentu
,
S.
,
Xie
,
F.
,
Liu
,
X. J.
, and
Gong
,
Z.
,
2020
, “
Motion Control and Trajectory Planning for Obstacle Avoidance of the Mobile Parallel Robot Driven by Three Tracked Vehicles
,”
Robotica.
,
39
(
6
), pp.
1037
1050
.
26.
Kumar
,
N.
, and
Coros
,
S.
,
2020
, “
Trajectory Optimization for a Class of Robots Belonging to Constrained Collaborative Mobile Agents (CCMA) Family
,”
Proc. IEEE Int. Conf. Robot. Autom.
, pp.
10391
10397
.
27.
Kumar
,
N.
, and
Coros
,
S.
,
2019
, “
Optimization Driven Kinematic Control of Constrained Collaborative Mobile Agents With High Mobility
,”
arXiv
.
28.
Kumar
,
N.
, and
Coros
,
S.
,
2019
, “
An Optimization Framework for Simulation and Kinematic Control of Constrained Collaborative Mobile Agents (CCMA) System
,”
arXiv
.
29.
Siegwart
,
R.
,
Nourbakhsh
,
I. R.
, and
Scaramuzza
,
D.
,
2011
,
Introduction to Autonomous Mobile Robots
,
MIT Press, Cambridge, MA
.
32.
Kong
,
X.
,
2013
, “
Type Synthesis of 3-DOF Parallel Manipulators With Both a Planar Operation Mode and a Spatial Translational Operation Mode
,”
ASME J. Mech. Rob.
,
5
(
4
), p.
041015
.
33.
Kong
,
X.
, and
Gosselin
,
C. M.
,
2004
, “
Type Synthesis of 3-DOF Spherical Parallel Manipulators Based on Screw Theory
,”
ASME J. Mech. Des.
,
126
(
1
), pp.
101
108
.
34.
Gan
,
D.
,
Dai
,
J. S.
, and
Caldwell
,
D. G.
,
2011
, “
Constraint-Based Limb Synthesis and Mobility-Change-Aimed Mechanism Construction
,”
ASME J. Mech. Des.
,
133
(
5
), p.
051001
.
35.
Gan
,
D.
,
Dai
,
J. S.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2014
, “
Constraint-Plane-Based Synthesis and Topology Variation of a Class of Metamorphic Parallel Mechanisms
,”
J. Mech. Sci. Technol.
,
28
(
10
), pp.
4179
4191
.
36.
Gan
,
D.
,
Dias
,
J.
, and
Seneviratne
,
L.
,
2016
, “
Unified Kinematics and Optimal Design of a 3rRPS Metamorphic Parallel Mechanism With a Reconfigurable Revolute Joint
,”
Mech. Mach. Theory
,
96
, pp.
239
254
.
You do not currently have access to this content.