Abstract

This article proposes a method for analyzing the gravity balancing reliability of spring-articulated serial robots with uncertainties. Gravity balancing reliability is defined as the probability that the torque reduction ratio (the ratio of the balanced torque to the unbalanced torque) is less than a specified threshold. In this paper, the reliability analysis is performed by exploiting a Monte Carlo simulation (MCS) with consideration of the uncertainties in the link dimensions, masses, and compliance parameters. A reliability-based design optimization (RBDO) method is also developed to seek reliable spring setting parameters for maximized balancing performance under a prescribed uncertainty level. The RBDO is formulated with consideration of a probabilistic reliability constraint and solved by using a particle swarm optimization (PSO) algorithm. A numerical example is provided to illustrate the gravity balancing performance and reliability of a robot with uncertainties. A sensitivity analysis of the balancing design is also performed. Lastly, the effectiveness of the RBDO method is demonstrated through a case study in which the balancing performance and reliability of a robot with uncertainties are improved with the proposed method.

References

1.
Lee
,
W.-B.
,
Lee
,
S.-D.
, and
Song
,
J.-B.
,
2017
, “
Design of a 6-DOF Collaborative Robot Arm With Counterbalance Mechanisms
,”
IEEE International Conference on Robotics and Automation (ICRA)
,
Singapore
,
May 29–June 3
, pp.
3696
3701
.
2.
Lee
,
D.
, and
Seo
,
T.
,
2017
, “
Lightweight Multi-DOF Manipulator With Wire-Driven Gravity Compensation Mechanism
,”
IEEE/ASME Trans. Mechatron.
,
22
(
3
), pp.
1308
1314
.
3.
Min
,
J.-K.
,
Kim
,
D.-W.
, and
Song
,
J.-B.
,
2020
, “
A Wall-Mounted Robot Arm Equipped With a 4-DOF Yaw-Pitch-Yaw-Pitch Counterbalance Mechanism
,”
IEEE Robot. Autom. Lett.
,
5
(
3
), pp.
3768
3774
.
4.
Kuo
,
C.-H.
,
Nguyen
,
V. L.
,
Robertson
,
D.
,
Chou
,
L.-T.
, and
Herder
,
J. L.
,
2021
, “
Statically Balancing a Reconfigurable Mechanism by Using One Passive Energy Element Only: A Case Study
,”
ASME J. Mech. Rob.
,
13
(
4
), p.
040904
.
5.
Lin
,
P.-Y.
,
Shieh
,
W.-B.
, and
Chen
,
D.-Z.
,
2010
, “
A Stiffness Matrix Approach for the Design of Statically Balanced Planar Articulated Manipulators
,”
Mech. Mach. Theory
,
45
(
12
), pp.
1877
1891
.
6.
Wang
,
J.
, and
Kong
,
X.
,
2019
, “
A Geometric Approach to the Static Balancing of Mechanisms Constructed Using Spherical Kinematic Chain Units
,”
Mech. Mach. Theory
,
140
, pp.
305
320
.
7.
Arakelian
,
V.
,
2016
, “
Gravity Compensation in Robotics
,”
Adv. Rob.
,
30
(
2
), pp.
79
96
.
8.
Carricato
,
M.
, and
Gosselin
,
C.
,
2009
, “
A Statically Balanced Gough/Stewart-Type Platform: Conception, Design, and Simulation
,”
ASME J. Mech. Rob.
,
1
(
3
), p.
031005
.
9.
Van der Wijk
,
V.
,
2017
, “
Design and Analysis of Closed-Chain Principal Vector Linkages for Dynamic Balance With a New Method for Mass Equivalent Modeling
,”
Mech. Mach. Theory
,
107
, pp.
283
304
.
10.
Audet
,
J. M.
, and
Gosselin
,
C.
,
2021
, “
Rotational Low-Impedance Physical Human–Robot Interaction Using Underactuated Redundancy
,”
ASME J. Mech. Rob.
,
13
(
1
), p.
014503
.
11.
Franco
,
J. A.
,
Gallego
,
J. A.
, and
Herder
,
J. L.
,
2021
, “
Static Balancing of Four-Bar Compliant Mechanisms With Torsion Springs by Exerting Negative Stiffness Using Linear Spring at the Instant Center of Rotation
,”
ASME J. Mech. Rob.
,
13
(
3
), p.
031010
.
12.
Plooij
,
M.
,
Wisse
,
M.
, and
Vallery
,
H.
,
2016
, “
Reducing the Energy Consumption of Robots Using the Bidirectional Clutched Parallel Elastic Actuator
,”
IEEE Trans. Rob.
,
32
(
6
), pp.
1512
1523
.
13.
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
Kinematic Reliability Analysis of Robotic Manipulator
,”
ASME J. Mech. Des.
,
142
(
4
), p.
044502
.
14.
Zhao
,
Q.
,
Guo
,
J.
,
Zhao
,
D.
,
Yu
,
D.
, and
Hong
,
J.
,
2020
, “
A Novel Approach to Kinematic Reliability Analysis for Planar Parallel Manipulators
,”
ASME J. Mech. Des.
,
142
(
8
), p.
081706
.
15.
Sun
,
D.
,
Chen
,
G.
,
Wang
,
T.
, and
Sun
,
R.
,
2014
, “
Wear Prediction of a Mechanism With Joint Clearance Involving Aleatory and Epistemic Uncertainty
,”
ASME J. Tribol.
,
136
(
4
), p.
041101
.
16.
Zhang
,
D.
,
Peng
,
Z.
,
Ning
,
G.
, and
Han
,
X.
,
2020
, “
Positioning Accuracy Reliability of Industrial Robots Through Probability and Evidence Theories
,”
ASME J. Mech. Des.
,
143
(
1
), p.
011704
.
17.
Zhang
,
X.
,
Pandey
,
M. D.
, and
Zhang
,
Y.
,
2014
, “
Computationally Efficient Reliability Analysis of Mechanisms Based on a Multiplicative Dimensional Reduction Method
,”
ASME J. Mech. Des.
,
136
(
6
), p.
061006
.
18.
Erkaya
,
S.
,
2018
, “
Experimental Investigation of Flexible Connection and Clearance Joint Effects on the Vibration Responses of Mechanisms
,”
Mech. Mach. Theory
,
121
, pp.
515
529
.
19.
Jiang
,
C.
,
Qiu
,
H.
,
Gao
,
L.
,
Wang
,
D.
,
Yang
,
Z.
, and
Chen
,
L.
,
2020
, “
Real-time Estimation Error-Guided Active Learning Kriging Method for Time-Dependent Reliability Analysis
,”
Appl. Math. Model.
,
77
, pp.
82
98
.
20.
Zhang
,
D.
,
Han
,
X.
,
Jiang
,
C.
,
Liu
,
J.
, and
Li
,
Q.
,
2017
, “
Time-Dependent Reliability Analysis Through Response Surface Method
,”
ASME J. Mech. Des.
,
139
(
4
), p.
041404
.
21.
Sun
,
D.
, and
Chen
,
G.
,
2016
, “
Kinematic Accuracy Analysis of Planar Mechanisms With Clearance Involving Random and Epistemic Uncertainty
,”
Eur. J. Mech. A. Solids
,
58
, pp.
256
261
.
22.
Li
,
H.-S.
,
Wang
,
X.-W.
,
Nan
,
H.
, and
Liu
,
M.
,
2021
, “
Application of a Sampling-Based Method for Estimation of Cumulative Failure Probability Functions of Mechanisms
,”
Mech. Mach. Theory
,
155
, p.
104050
.
23.
Zhao
,
Q.
,
Guo
,
J.
,
Hong
,
J.
, and
Chirikjian
,
G. S.
,
2021
, “
An Enhanced Moment-Based Approach to Time-Dependent Positional Reliability Analysis for Robotic Manipulators
,”
Mech. Mach. Theory
,
156
, p.
104167
.
24.
Wang
,
Z.
,
Wang
,
Z.
,
Yu
,
S.
, and
Zhang
,
K.
,
2019
, “
Time-Dependent Mechanism Reliability Analysis Based on Envelope Function and Vine-Copula Function
,”
Mech. Mach. Theory
,
134
, pp.
667
684
.
25.
Huang
,
P.
,
Huang
,
H.-Z.
,
Li
,
Y.-F.
, and
Li
,
H.
,
2021
, “
Positioning Accuracy Reliability Analysis of Industrial Robots Based on Differential Kinematics and Saddlepoint Approximation
,”
Mech. Mach. Theory
,
162
, p.
104367
.
26.
Yu
,
S.
, and
Wang
,
Z.
,
2018
, “
A Novel Time-Variant Reliability Analysis Method Based on Failure Processes Decomposition for Dynamic Uncertain Structures
,”
ASME J. Mech. Des.
,
140
(
5
), p.
051401
.
27.
Zhan
,
Z.
,
Zhang
,
X.
,
Zhang
,
H.
, and
Chen
,
G.
,
2019
, “
Unified Motion Reliability Analysis and Comparison Study of Planar Parallel Manipulators With Interval Joint Clearance Variables
,”
Mech. Mach. Theory
,
138
, pp.
58
75
.
28.
Yang
,
M.
,
Zhang
,
D.
,
Cheng
,
C.
, and
Han
,
X.
,
2021
, “
Reliability-Based Design Optimization for RV Reducer With Experimental Constraint
,”
Struct. Multidiscipl. Optim.
,
63
(
4
), pp.
2047
2064
.
29.
Cui
,
T.
,
Allison
,
J. T.
, and
Wang
,
P.
,
2020
, “
A Comparative Study of Formulations and Algorithms for Reliability-Based Co-design Problems
,”
ASME J. Mech. Des.
,
142
(
3
), p.
031104
.
30.
Shi
,
Y.
,
Lu
,
Z.
, and
Huang
,
Z.
,
2020
, “
Time-Dependent Reliability-Based Design Optimization With Probabilistic and Interval Uncertainties
,”
Appl. Math. Model.
,
80
, pp.
268
289
.
31.
Yin
,
J.
, and
Du
,
X.
,
2021
, “
A Safety Factor Method for Reliability-Based Component Design
,”
ASME J. Mech. Des.
,
143
(
9
), p.
091705
.
32.
Meng
,
Z.
,
Li
,
G.
,
Wang
,
X.
,
Sait
,
S. M.
, and
Yıldız
,
A. R.
,
2021
, “
A Comparative Study of Metaheuristic Algorithms for Reliability-Based Design Optimization Problems
,”
Arch. Comput. Meth. Eng.
,
28
(
3
), pp.
1853
1869
.
33.
Yang
,
M.
,
Zhang
,
D.
, and
Han
,
X.
,
2020
, “
New Efficient and Robust Method for Structural Reliability Analysis and Its Application in Reliability-Based Design Optimization
,”
Comput. Methods Appl. Mech. Eng.
,
366
, p.
113018
.
34.
Lin
,
P. T.
,
Chang Gea
,
H.
, and
Jaluria
,
Y.
,
2011
, “
A Modified Reliability Index Approach for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
133
(
4
), p.
044501
.
35.
Jiang
,
C.
,
Han
,
S.
,
Ji
,
M.
, and
Han
,
X.
,
2015
, “
A New Method to Solve the Structural Reliability Index Based on Homotopy Analysis
,”
Acta Mech.
,
226
(
4
), pp.
1067
1083
.
36.
Keshtegar
,
B.
,
Meng
,
D.
,
Seghier
,
M. E. A. B.
,
Xiao
,
M.
,
Trung
,
N.-T.
, and
Bui
,
D. T.
,
2020
, “
A Hybrid Sufficient Performance Measure Approach to Improve Robustness and Efficiency of Reliability-Based Design Optimization
,”
Eng. Comput.
,
37
(
3
), pp.
1695
1708
.
37.
Li
,
G.
,
Yang
,
H.
, and
Zhao
,
G.
,
2020
, “
A New Efficient Decoupled Reliability-Based Design Optimization Method With Quantiles
,”
Struct. Multidiscipl. Optim.
,
61
(
2
), pp.
635
647
.
38.
Youn
,
B. D.
, and
Choi
,
K. K.
,
2004
, “
A New Response Surface Methodology for Reliability-Based Design Optimization
,”
Comput. Struct.
,
82
(
2–3
), pp.
241
256
.
39.
Li
,
G.
,
Meng
,
Z.
, and
Hu
,
H.
,
2015
, “
An Adaptive Hybrid Approach for Reliability-Based Design Optimization
,”
Struct. Multidiscipl. Optim.
,
51
(
5
), pp.
1051
1065
.
40.
Hu
,
C.
,
Youn
,
B. D.
, and
Wang
,
P.
,
2019
,
Engineering Design Under Uncertainty and Health Prognostics
,
Springer International Publishing AG
,
Cham, Switzerland
.
41.
Youn
,
B. D.
,
Choi
,
K. K.
, and
Park
,
Y. H.
,
2003
, “
Hybrid Analysis Method for Reliability-Based Design Optimization
,”
ASME J. Mech. Des.
,
125
(
2
), pp.
221
232
.
42.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Planar Articulated Robotic Arms Using the Gear-Spring Modules
,”
ASME J. Mech. Rob.
,
12
(
3
), p.
031014
.
43.
Nguyen
,
V. L.
,
Lin
,
C.-Y.
, and
Kuo
,
C.-H.
,
2020
, “
Gravity Compensation Design of Delta Parallel Robots Using Gear-Spring Modules
,”
Mech. Mach. Theory
,
154
, p.
104046
.
44.
Kroese
,
D. P.
,
Brereton
,
T.
,
Taimre
,
T.
, and
Botev
,
Z. I.
,
2014
, “
Why the Monte Carlo Method Is So Important Today
,”
Wiley Interdiscip. Rev. Comput. Stat.
,
6
(
6
), pp.
386
392
.
45.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
Proceedings of the IEEE Sixth International Symposium on Micro Machine and Human Science
,
Nagoya, Japan
,
Oct. 4–6
, pp.
39
43
.
46.
Wang
,
J.
, and
Gosselin
,
C. M.
,
1999
, “
Static Balancing of Spatial Three-Degree-of-Freedom Parallel Mechanisms
,”
Mech. Mach. Theory
,
34
(
3
), pp.
437
452
.
47.
Herder
,
J. L.
,
2001
, “
Energy-free Systems: Theory, Conception and Design of Statically Balanced Spring Mechanisms
,”
Ph.D. dissertation
,
Delft University of Technology
,
Delft, The Netherlands
.
48.
Zhang
,
J.
, and
Du
,
X.
,
2015
, “
Time-Dependent Reliability Analysis for Function Generation Mechanisms With Random Joint Clearances
,”
Mech. Mach. Theory
,
92
, pp.
184
199
.
49.
GmbH
,
K. R.
,
2019
, “
The KR QUANTEC Series, KR 210 R3100 Ultra
,”
KUKA Industrial Robotics_High Payloads, KUKA Deutschland GmbH Zugspitzstrasse 140
, 86165 Augsburg, Germany.
50.
Hartenberg
,
R. S.
, and
Denavit
,
J.
,
1964
,
Kinematic Synthesis of Linkages
,
McGraw-Hill
,
New York, NY
.
51.
Merckaert
,
K.
,
De Beir
,
A.
,
Adriaens
,
N.
,
El Makrini
,
I.
,
Van Ham
,
R.
, and
Vanderborght
,
B.
,
2018
, “
Independent Load Carrying and Measurement Manipulator Robot Arm for Improved Payload to Mass Ratio
,”
Rob. Comput. Integr. Manuf.
,
53
, pp.
135
140
.
52.
Tsai
,
L.-W.
,
1999
,
Robot Analysis: The Mechanics of Serial and Parallel Manipulators
,
John Wiley & Sons
,
New York
.
You do not currently have access to this content.