Abstract

Compliant mechanisms (CMs) are used to transfer motion, force, and energy, taking advantages of the elastic deformation of the involved compliant members. A branch of special type of elastic phenomenon called (post) buckling has been widely considered in CMs: avoiding buckling for better payload-bearing capacity and utilizing post-buckling to produce multi-stable states. This paper digs into the essence of beam’s buckling and post-buckling behaviors where we start from the famous Euler–Bernoulli beam theory and then extend the mentioned linear theory into geometrically nonlinear one to handle multi-mode buckling problems via introducing the concept of bifurcation theory. Five representative beam buckling cases are studied in this paper, followed by detailed theoretical investigations of their post-buckling behaviors where the multi-state property has been proved. We finally propose a novel type of bi-stable mechanisms termed as pre-buckled bi-stable mechanisms (PBMs) that integrate the features of both rigid and compliant mechanisms. The theoretical insights of PBMs are presented in detail. To the best of our knowledge, this paper is the first study on the theoretical derivation of the kinematic models of PBMs, which could be an important contribution to this field.

References

1.
Howell
,
L. L.
,
2013
,
Compliant Mechanisms
,
Springer
,
London
.
2.
Lobontiu
,
N.
,
2020
,
Compliant Mechanisms:Design of Flexure Hinges
,
CRC Press
,
Boca Raton, FL
.
3.
Farhadi Machekposhti
,
D.
,
Tolou
,
N.
, and
Herder
,
J.
,
2015
, “
A Review on Compliant Joints and Rigid-body Constant Velocity Universal Joints Toward the Design of Compliant Homokinetic Couplings
,”
ASME J. Mech. Des.
,
137
(
3
), p.
032301
.
4.
Awtar
,
S.
,
2003
,
Synthesis and Analysis of Parallel Kinematic XY Flexure Mechanisms
, Ph.D. thesis,
Massachusetts Institute of Technology
,
Cambridge, MA
.
5.
Oh
,
Y. S.
, and
Kota
,
S.
,
2009
, “
Synthesis of Multistable Equilibrium Compliant Mechanisms Using Combinations of Bistable Mechanisms
,”
ASME J. Mech. Des.
,
131
(
2
), p.
021002
.
6.
Wang
,
P.
, and
Xu
,
Q.
,
2018
, “
Design and Modeling of Constant-force Mechanisms:A Survey
,”
Mech. Mach. Theory
,
119
(
2
), pp.
1
21
.
7.
Jones
,
R. M.
,
2006
,
Buckling of Bars, Plates, and Shells
,
Bull Ridge Corporation
,
Blacksburg, VA
.
8.
Brush
,
D. O.
,
Almroth
,
B. O.
, and
Hutchinson
,
J.
,
1975
, “
Buckling of Bars, Plates, and Shells
.”
9.
Timoshenko
,
S. P.
, and
Gere
,
J. M.
,
2009
,
Theory of Elastic Stability
,
Courier Corporation
,
New York
.
10.
Chen
,
G.
, and
Ma
,
F.
,
2015
, “
Kinetostatic Modeling of Fully Compliant Bistable Mechanisms Using Timoshenko Beam Constraint Model
,”
ASME J. Mech. Des.
,
137
(
2
), p.
022301
.
11.
Euler
,
L.
,
1744
,
Methodus Inveniendi Lineas Curvas Maximi Minimive Proprietate Gaudentes
,
apud Marcum-Michaelem Bousquet
,
St. Petersburg
.
12.
Lagrange
,
J.-L.
,
1770
, “
Sur La Figure Des Colonnes
,”
Miscellanea Taurinensia
,
5
, pp.
123
166
.
13.
Todhunter
,
I.
,
1893
,
A History of the Theory of Elasticity and of the Strength of Materials: PTS. 1–2. Saint-Venant to Lord Kelvin
, Vol.
2
,
University Press
,
Cambridge
.
14.
Chow
,
S.-N.
, and
Hale
,
J. K.
,
2012
,
Methods of Bifurcation Theory
, Vol.
251
,
Springer Science & Business Media
,
New York
.
15.
Antman
,
S.
,
1996
,
Nonlinear Problems of Elasticity
, 2nd ed.,
Springer
,
Dordrecht
.
16.
Lacarbonara
,
W.
,
2008
, “
Buckling and Post-buckling of Non-Uniform Non-Linearly Elastic Rods
,”
Int. J. Mech. Sci.
,
50
(
8
), pp.
1316
1325
.
17.
Domokos
,
G.
,
Holmes
,
P.
, and
Royce
,
B.
,
2000
, “Constrained Euler Buckling,”
Mechanics: From Theory to Computation
,
Springer
,
New York
, pp.
413
446
.
18.
Emam
,
S.
, and
Lacarbonara
,
W.
,
2021
, “
Buckling and Postbuckling of Extensible, Shear-deformable Beams: Some Exact Solutions and New Insights
,”
Int. J. Non-Linear Mech.
,
129
(
8
), p.
103667
.
19.
Yuan
,
Z.
, and
Wang
,
X.
,
2011
, “
Buckling and Post-Buckling Analysis of Extensible Beam–Columns by Using the Differential Quadrature Method
,”
Comput. Math. Appl.
,
62
(
12
), pp.
4499
4513
.
20.
Hansen
,
B.
,
Carron
,
C.
,
Jensen
,
B.
,
Hawkins
,
A.
, and
Schultz
,
S.
,
2007
, “
Plastic Latching Accelerometer Based on Bistable Compliant Mechanisms
,”
Smart Mater. Struct.
,
16
(
5
), pp.
1967
1972
.
21.
Brake
,
M. R.
,
Baker
,
M. S.
,
Moore
,
N. W.
,
Crowson
,
D. A.
,
Mitchell
,
J. A.
, and
Houston
,
J. E.
,
2010
, “
Modeling and Measurement of a Bistable Beam in a Microelectromechanical System
,”
J. Microelectromech. Syst.
,
19
(
6
), pp.
1503
1514
.
22.
Gomm
,
T.
,
Howell
,
L. L.
, and
Selfridge
,
R. H.
,
2002
, “
In-Plane Linear Displacement Bistable Microrelay
,”
J. Micromech. Microeng.
,
12
(
3
), pp.
257
264
.
23.
Hafez
,
M.
,
Lichter
,
M. D.
, and
Dubowsky
,
S.
,
2003
, “
Optimized Binary Modular Reconfigurable Robotic Devices
,”
IEEE/ASME Trans. Mechatron.
,
8
(
1
), pp.
18
25
.
24.
Pucheta
,
M. A.
, and
Cardona
,
A.
,
2010
, “
Design of Bistable Compliant Mechanisms Using Precision-Position and Rigid-Body Replacement Methods
,”
Mech. Mach. Theory
,
45
(
2
), pp.
304
326
.
25.
Ando
,
B.
,
Baglio
,
S.
,
L’Episcopo
,
G.
, and
Trigona
,
C.
,
2012
, “
Investigation on Mechanically Bistable MEMS Devices for Energy Harvesting From Vibrations
,”
J. Microelectromech. Syst.
,
21
(
4
), pp.
779
790
.
26.
Russell
,
R.
, and
Shampine
,
L. F.
,
1972
, “
A Collocation Method for Boundary Value Problems
,”
Numerische Mathematik
,
19
(
1
), pp.
1
28
.
27.
Shampine
,
L. F.
,
Kierzenka
,
J.
, and
Reichelt
,
M. W.
,
2000
, “
Solving Boundary Value Problems for Ordinary Differential Equations in Matlab with bvp4c
,”
Tutorial Notes
,
2000
, pp.
1
27
.
28.
Traub
,
J. F.
,
1982
,
Iterative Methods for the Solution of Equations
, Vol.
312
.
American Mathematical Soc
.
29.
Greenbaum
,
A.
,
1997
,
Iterative Methods for Solving Linear Systems
,
SIAM
.
You do not currently have access to this content.