Abstract

The compliant mechanism can effectively reduce friction and eliminate the joint gap during the motion. The performances of compliant joints directly determine the overall behavior of mechanisms. In this paper, a new type of compliant joint is designed based on weakened creases and elastic–plastic materials. Parametric analysis is carried out to investigate the influence of compliant joint details on its structural performances by combining finite element methods and experiments. The compliant joints are evaluated and optimized regarding the rotational stiffness and plastic strain magnitude of the slot region. In addition, the optimized compliant joint is introduced to the Miura unit. The configuration analysis is performed for the folding, unfolding, and releasing processes, which are further extended to the discussion on the cyclic performance of the compliant joint. It can be found that the origami-inspired structures can maintain a high residual stiffness after the release process. Finally, the methodology is applied to the Miura origami array embedded with the designed compliant joint. The results of dimensional errors and stress distributions can show that the design of the compliant joints can effectively control the configuration of the Miura origami array. The principle in this paper can open a new avenue to design and utilize the compliant in the deployable or morphing structures.

References

1.
Meloni
,
M.
,
Cai
,
J.
,
Zhang
,
Q.
,
Sang-Hoon Lee
,
D.
,
Li
,
M.
,
Ma
,
R.
,
Parashkevov
,
T. E.
, and
Feng
,
J.
,
2021
, “
Engineering Origami: A Comprehensive Review of Recent Applications, Design Methods, and Tools
,”
Adv. Sci.
,
8
(
13
), p.
2000636
.
2.
Faber
,
J. A.
,
Arrieta
,
A. F.
, and
Studart
,
A. R.
,
2018
, “
Bioinspired Spring Origami
,”
Science
,
359
(
6382
), pp.
1386
1391
.
3.
Zhang
,
Q.
,
Wang
,
X.
,
Cai
,
J.
, and
Ferng
,
J.
,
2021
, “
Motion Paths and Mechanical Behavior of Origami-Inspired Tunable Structures
,”
Mater. Today Commun.
,
26
, p.
101872
.
4.
You
,
Z.
, and
Pellegrino
,
S.
,
1997
, “
Cable-Stiffened Pantographic Deployable Structures Part 2: Mesh Reflector
,”
AIAA J.
,
35
(
8
), pp.
1348
1355
.
5.
Cai
,
J.
,
Zhang
,
Q.
,
Feng
,
J.
, and
Xu
,
Y.
,
2019
, “
Modeling and Kinematic Path Selection of Retractable Kirigami Roof Structures
,”
Comput.-Aided Civ. Infrastruct. Eng.
,
34
(
4
), pp.
352
363
.
6.
Zhang
,
Q.
,
Pan
,
N.
,
Meloni
,
M.
,
Lu
,
D.
,
Cai
,
J.
, and
Feng
,
J.
,
2021
, “
Reliability Analysis of Radially Retractable Roofs With Revolute Joint Clearances
,”
Reliab. Eng. Syst. Saf.
,
208
, p.
107401
.
7.
Santangelo
,
C. D.
,
2020
, “
Theory and Practice of Origami in Science
,”
Soft Matter
,
16
(
1
), pp.
94
101
.
8.
Felton
,
S.
,
Tolley
,
M.
,
Demaine
,
E.
,
Rus
,
D.
, and
Wood
,
R.
,
2014
, “
A Method for Building Self-folding Machines
,”
Science
,
345
(
6197
), pp.
644
646
.
9.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
Evaluating Compliant Hinge Geometries for Origami-Inspired Mechanisms
,”
ASME J. Mech. Rob.
,
7
(
1
), p.
011009
.
10.
Pehrson
,
N. A.
,
Bilancia
,
P.
,
Magleby
,
S.
, and
Howell
,
L.
,
2020
, “
Load–Displacement Characterization in Three Degrees-of-Freedom for General Lamina Emergent Torsion Arrays
,”
ASME J. Mech. Des.
,
142
(
9
), p.
093301
.
11.
Paros
,
J. M.
, and
Weisbord
,
L.
,
1965
, “
How to Design Flexure Hinges
,”
Mach. Des.
,
37
(
27
), pp.
151
156
.
12.
Jacobsen
,
J. O.
,
Chen
,
G.
, and
Howell
,
L. L.
,
2009
, “
Lamina Emergent Torsional (LET) Joint
,”
Mech. Mach. Theory
,
44
(
11
), pp.
2098
2109
.
13.
Tian
,
Y.
,
Shirinzadeh
,
B.
, and
Zhang
,
D.
,
2010
, “
Three Flexure Hinges for Compliant Mechanism Designs Based on Dimensionless Graph Analysis
,”
Precis. Eng.
,
34
(
1
), pp.
92
100
.
14.
Lobontiu
,
N.
,
Paine Jeffrey
,
S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2001
, “
Corner-Filleted Flexure Hinges
,”
ASME J. Mech. Des.
,
123
(
3
), pp.
346
352
.
15.
Lobontiu
,
N.
,
Paine
,
J. S. N.
,
Garcia
,
E.
, and
Goldfarb
,
M.
,
2002
, “
Design of Symmetric Conic-Section Flexure Hinges Based on Closed-Form Compliance Equations
,”
Mech. Mach. Theory
,
37
(
5
), pp.
477
498
.
16.
Delimont
,
I. L.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2015
, “
A Family of Dual-Segment Compliant Joints Suitable for Use as Surrogate Folds
,”
ASME J. Mech. Des.
,
137
(
9
), p.
092302
.
17.
Qiu
,
L.
,
Yin
,
S.
, and
Xie
,
Z.
,
2016
, “
Failure Analysis and Performance Comparison of Triple-LET and LET Flexure Hinges
,”
Eng. Fail. Anal.
,
66
, pp.
35
43
.
18.
Nelson
,
T. G.
,
Lang
,
R. J.
,
Pehrson
,
N. A.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2016
, “
Facilitating Deployable Mechanisms and Structures via Developable Lamina Emergent Arrays
,”
ASME J. Mech. Rob.
,
8
(
3
), p.
031006
.
19.
Xie
,
Z.
,
Qiu
,
L.
, and
Yang
,
D.
,
2018
, “
Design and Analysis of a Variable Stiffness Inside-Deployed Lamina Emergent Joint
,”
Mech. Mach. Theory
,
120
, pp.
166
177
.
20.
Chen
,
G.
,
Magleby
,
S. P.
, and
Howell
,
L. L.
,
2018
, “
Membrane-Enhanced Lamina Emergent Torsional Joints for Surrogate Folds
,”
ASME J. Mech. Des.
,
140
(
6
), p.
062303
.
21.
Zhang
,
H.
,
Zhang
,
X.
, and
Zhu
,
B.
,
2019
, “
A Novel Flexural Lamina Emergent Spatial Joint
,”
Mech. Mach. Theory
,
142
,
103582
.
22.
Yuan
,
C.
,
Wang
,
T.
,
Dunn
,
M. L.
, and
Qi
,
H. J.
,
2017
, “
3D Printed Active Origami with Complicated Folding Patterns
,”
Int. J. Precis. Eng. Manuf.-Green Technol.
,
4
(
3
), pp.
281
289
.
23.
Lazarus
,
N.
,
Smith
,
G. L.
, and
Dickey
,
M. D.
,
2019
, “
Self-folding Metal Origami
,”
Adv. Intell. Syst.
,
1
(
7
), p.
1900059
.
24.
van Manen
,
T.
,
Janbaz
,
S.
,
Ganjian
,
M.
, and
Zadpoor
,
A. A.
,
2020
, “
Kirigami-Enabled Self-Folding Origami
,”
Mater. Today
,
32
, pp.
59
67
.
25.
Grey
,
S. W.
,
Scarpa
,
F.
, and
Schenk
,
M.
,
2021
, “
Embedded Actuation for Shape-Adaptive Origami
,”
ASME J. Mech. Des.
,
143
(
8
), p.
081703
.
26.
Schenk
,
M.
, and
Guest
,
S. D.
,
2013
, “
Geometry of Miura-Folded Metamaterials
,”
Proc. Natl. Acad. Sci. U. S. A.
,
110
(
9
), pp.
3276
3281
.
You do not currently have access to this content.